Proinflammatory cytokines and circulating tumor cells in ovarian cancer patients treated with platinum-containing chemotherapy
pdf (Русский)

Keywords

ovarian cancer
circulating tumor cells
chemotherapy
IL-17A, IL-18

How to Cite

Gening, S., Abakumova, T., Dolgova, D., Antoneeva, I., Gening, T., & Kolodiy, I. (2021). Proinflammatory cytokines and circulating tumor cells in ovarian cancer patients treated with platinum-containing chemotherapy. Voprosy Onkologii, 67(6), 804–814. https://doi.org/10.37469/0507-3758-2021-67-6-804-814

Abstract

Summary. Circulating tumor cells (CTCs) are a potential source of tumor progression. Systemic tumor-associated inflammation can influence the cancer prognosis both independently and by changing the characteristics of CTCs. Data on the role of proinflammatory cytokines and CTCs in the ovarian cancer (OC) chemosensitivity are few and contradictory.

Aim of the study. To assess the IL-17A, IL-18 levels and the number of CTCs in primary patients with OC before treatment and after 3 courses of standard platinum-containing chemotherapy, and the possibility of using these cytokines as a marker of the presence of CTCs.

Materials and methods. The study included 72 patients with OC. The comparison group included 16 patients with benign ovarian tumors, the control group included 20 healthy women. The number of CTCs (CD45-/EpCam+/CK+) was determined immunofluorometrically before and after 3 courses of chemotherapy. The content of cytokines was assessed by ELISA. Statistica 13.0, jamovi 1.6.5.0 were used for data processing.

Results. The level of IL-17A in blood in the benign tumors group was increased in comparison with OC (р=0.012) and control (р=0.042). The content of IL-17A increased over time in the subgroup of adjuvant chemotherapy (р=0.017). During treatment, IL-17A was higher among patients with platinum-sensitive tumors than with non-sensitive ones (р=0.054). High levels of IL-18 before treatment were associated with the development of platinum-refractory relapse (р=0.014). IL-18 levels before (р=0.027) and during treatment (p=0.052) were lower in patients with cytoreductive surgery in first line of treatment. Progression-free survival (PFS) (p = 0.012) and overall survival (OS) (p = 0.030) were lower in the cluster with high IL-18 and pretreatment leukocyte counts than in the cluster with low scores. Higher quantity of the pretreatment CTCs was associated with longer PFS in a multivariate analysis (HR 0.82 95% CI 0.69–0.98, р=0.028). The number of CTCs before treatment greater than 5 was associated with a decrease in OS (HR 1.31, 95% CI 0.98–1.73, р=0.064).

Conclusions. A high level of IL-17A in the blood during treatment is associated with more favorable clinical characteristics of OC, while a high level of IL-18 in the blood before treatment is associated with less favorable characteristics and a worse prognosis. The number of CTCs in patients with OC is not related to the blood levels of IL-17A and IL-18. A greater number of CTCs before treatment in OC is associated with an increase in PFS, but a decrease in overall survival.

https://doi.org/10.37469/0507-3758-2021-67-6-804-814
pdf (Русский)

References

Ferlay J, Ervik M, Lam F. et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer [Electronic resource]. 2018. URL:https://gco.iarc.fr/today (accessed: 20.12.2020).

Тюляндин С. А., Коломиец Л. А., Морхов К. Ю. и др. Практические рекомендации по лекарственному лечению рака яичников, первичного рака брюшины и рака маточных труб. Злокачественные опухоли: Практические рекомендации RUSSCO. 2020;10(3s2):188–200. doi:10.18027 / 2224-5057-2019-9-3s2-164-176 [Tyulyandin S. A, Kolomiec L. A, Morhov K. YU. et al. Practical recommendations for drug treatment of ovarian cancer, primary cancer of the peritoneum and cancer of the fallopian tubes. Malignant tumors: Practical Guidelines RUSSCO. 2020;10(3s2):188–200 (In Russ.)]. doi:10.18027 / 2224-5057-2019-9-3s2-164-176

Ledermann JA, Raja FA, Fotopoulou C et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up // Ann Oncol. 2013;24(6):24–32. doi:10.1093/annonc/mdt333

Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine // CA Cancer J Clin. 2019;69(4):280‐304. doi:10.3322/caac.21559

Friedlander M, Trimble E, Tinker A et al. Clinical trials in recurrent ovarian cancer // Int J Gynecol Cancer. 2011;21(4):771–5. doi:10.1097/IGC.0b013e31821bb8aa

Muinao T, Deka Boruah H.P, Pal M. Diagnostic and Prognostic Biomarkers in ovarian cancer and the potential roles of cancer stem cells — An updated review // Exp Cell Res. 2018;362(1):1–10. doi:10.1016/j.yexcr.2017.10.018

Luo Z, Wang Q, Lau WB et al. Tumor microenvironment: The culprit for ovarian cancer metastasis? // Cancer Lett. 2016;377(2):174–182. doi:10.1016/j.canlet.2016.04.038

Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the Treatment of Cancer // J Interferon Cytokine Res. 2019;39(1):6–21. doi:10.1089/jir.2018.0019

Almahmoudi R, Salem A, Murshid S. et al. Interleukin-17F Has Anti-Tumor Effects in Oral Tongue Cancer // Cancers (Basel). 2019;11(5):650. doi:10.3390/cancers11050650

Симбирцев А.С. Цитокины в патогенезе и лечении заболеваний человека. СПб: Фолиант, 2018 [Simbircev AS. Cytokines in the pathogenesis and treatment of human diseases. SPb: Foliant, 2018 (In Russ.].

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation // Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013

Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 binding protein // Front Immunol. 2013;4:289. doi:10.3389/fimmu.2013.00289

Esmailbeig M, Ghaderi A. Interleukin-18: a regulator of cancer and autoimmune diseases // Eur Cytokine Netw. 2017;28(4):127–140. doi:10.1684/ecn.2018.0401

Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in Health and Disease // Int J Mol Sci. 2019;20(3):649. doi:10.3390/ijms20030649

Thakur B, Ray P. Cisplatin triggers cancer stem cell enrichment in platinum-resistant cells through NF-κB-TNFα-PIK3CA loop // J Exp Clin Cancer Res. 2017;36(1):164. doi:10.1186/s13046-017-0636-8

Zheng B, Geng L, Zeng L et al. AKT2 contributes to increase ovarian cancer cell migration and invasion through the AKT2-PKM2-STAT3/NF-κB axis // Cell Signal. 2018;45:122–131. doi:10.1016/j.cellsig.2018.01.021

Vilsmaier T, Rack B, König A et al. Influence of Circulating Tumour Cells on Production of IL-1α, IL-1β and IL-12 in Sera of Patients with Primary Diagnosis of Breast Cancer Before Treatment // Anticancer Res. 2016;36(10):5227–5236. doi:10.21873/anticanres.11093

Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: The Yin and the Yang // Trends Immunol. 2017;38(5):310–322. doi:10.1016/j.it.2017.01.006

Aotsuka A, Matsumoto Y, Arimoto T et al. Interleukin-17 is associated with expression of programmed cell death 1 ligand 1 in ovarian carcinoma // Cancer Sci. 2019;110(10):3068–3078. doi:10.1111/cas.14174

Yu C, Niu X, Du Y. et al. IL-17A promotes fatty acid uptake through the IL-17A/IL-17RA/p-STAT3/FABP4 axis to fuel ovarian cancer growth in an adipocyte-rich microenvironment // Cancer Immunol Immunother. 2020;69(1):115–126. doi:10.1007/s00262-019-02445-2

Xiang T, Long H, He L et al. Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer // Oncogene. 2015;34(2):165–76. doi:10.1038/onc.2013.537

Block MS, Dietz AB, Gustafson MP et al. Th17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients // Nat Commun. 2020;11(1):5173. doi:10.1038/s41467-020-18962-z

Pantel K, Speicher MR. The biology of circulating tumor cells // Oncogene. 2016;35(10):1216–1224. doi:10.1038/onc.2015.192

Akhtar M, Haider A, Rashid S, Al-Nabet ADMH. Paget's «Seed and Soil» Theory of Cancer Metastasis: An Idea Whose Time has Come // Adv Anat Pathol. 2019;26(1):69–74. doi:10.1097/PAP.0000000000000219

Zhang Y, Ma Q, Liu T et al. Interleukin-6 suppression reduces tumour self-seeding by circulating tumour cells in a human osteosarcoma nude mouse model // Oncotarget. 2016;7(1):446–58. doi:10.18632/oncotarget.6371

Rack B, Schindlbeck C, Jückstock J et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients // J Natl Cancer Inst. 2014;106(5):dju066. doi:10.1093/jnci/dju066

Le Du F, Fujii T, Kida K et al. EpCAM-independent isolation of circulating tumor cells with epithelial-to-mesenchymal transition and cancer stem cell phenotypes using ApoStream® in patients with breast cancer treated with primary systemic therapy // PLoS One. 2020;15(3):e0229903. doi:10.1371/journal.pone.0229903

Giannopoulou L, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: recent advances on circulating tumor cells and circulating tumor DNA // Clin Chem Lab Med. 2018;56(2):186–197. doi:10.1515/cclm-2017-0019

Poveda A, Kaye SB, McCormack R et al. Circulating tumor cells predict progression free survival and overall survival in patients with relapsed/recurrent advanced ovarian cancer // Gynecol Oncol. 2011;122(3):567–72. doi:10.1016/j.ygyno.2011.05.028

Behbakht K, Sill MW, Darcy KM et al. Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study // Gynecol Oncol. 2011 Oct;123(1):19–26. doi:10.1016/j.ygyno.2011.06.022

Kiss I, Pospisilova E, Kolostova K. et al. Circulating Endometrial Cells in Women With Spontaneous Pneumothorax // Chest. 2020;157(2):342–355. doi:10.1016/j.chest.2019.09.008

Nelson MH, Knochelmann HM, Bailey SR et al. Identification of human CD4+ T cell populations with distinct antitumor activity // Sci Adv. 2020;6(27):eaba7443. doi:10.1126/sciadv.aba7443

Miyahara Y, Odunsi K, Chen W et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer // Proc Natl Acad Sci USA. 2008;105(40):15505–10. doi:10.1073/pnas.0710686105

Chen X, Zhang X, Xu R et al. Implication of IL-17 producing betaT and gammadeltaT cells in patients with ovarian cancer // Hum Immunol. 2020;81(5):244–248. doi:10.1016/j.humimm.2020.02.002

Zheng H, Zhang M, Ma S et al. Identification of the key genes associated with chemotherapy sensitivity in ovarian cancer patients // Cancer Med. 2020;10.1002/cam4.3122. doi:10.1002/cam4.3122

Bilska M, Pawłowska A, Zakrzewska E et al. Th17 Cells and IL-17 As Novel Immune Targets in Ovarian Cancer Therapy // J Oncol. 2020;2020:8797683. doi:10.1155/2020/8797683

Wei Y, Ou T, Lu Y et al. Classification of ovarian cancer associated with BRCA1 mutations, immune checkpoints, and tumor microenvironment based on immunogenomic profiling // Peer J. 2020;8:e10414. doi:10.7717/peerj.10414

Medina L, Rabinovich A, Piura B. et al. Expression of IL-18, IL-18 binding protein, and IL-18 receptor by normal and cancerous human ovarian tissues: possible implication of IL-18 in the pathogenesis of ovarian carcinoma // Mediators Inflamm. 2014;2014:914954. doi:10.1155/2014/914954

Carbotti G, Barisione G, Orengo AM et al. The IL-18 antagonist IL-18-binding protein is produced in the human ovarian cancer microenvironment // Clin Cancer Res. 2013;19(17):4611–4620. doi:10.1158/1078-0432

Park IH, Yang HN, Lee KJ et al. Tumor-derived IL-18 induces PD-1 expression on immunosuppressive NK cells in triple-negative breast cancer // Oncotarget. 2017;8(20):32722–32730. doi:10.18632/oncotarget.16281

Uppendahl LD, Felices M, Bendzick L et al. Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against ovarian cancer cells // Gynecol Oncol. 2019;153(1):149–157. doi:10.1016/j.ygyno.2019.01.006

Quatrini L, Vacca P, Tumino N et al. Glucocorticoids and the cytokines IL-12, IL-15, and IL-18 present in the tumor microenvironment induce PD-1 expression on human natural killer cells // J Allergy Clin Immunol. 2020;S0091-6749(20):30646–1. doi:10.1016/j.jaci.2020.04.044

Nakamura M, Bax HJ, Scotto D et al. Immune mediator expression signatures are associated with improved outcome in ovarian carcinoma // Oncoimmunology. 2019;8(6):e1593811. doi:10.1080/2162402X.2019.1593811

Beyazit F, Unsal MA. IL18 receptors are required for IL-37-mediated epithelial ovarian tumor progression // Arch Gynecol Obstet. 2017;295(6):1301–1302. doi:10.1007/s00404-017-4388-7

Akahiro J, Konno R, Ito K, Okamura K, Yaegashi N. Impact of serum interleukin-18 level as a prognostic indicator in patients with epithelial ovarian carcinoma // Int J Clin Oncol. 2004;9(1):42–46. doi:10.1007/s10147-003-0360-6

Banys-Paluchowski M, Fehm T, Neubauer H et al. Clinical relevance of circulating tumor cells in ovarian, fallopian tube and peritoneal cancer // Arch Gynecol Obstet. 2020;301(4):1027–1035. doi:10.1007/s00404-020-05477-7

Kim M, Suh DH, Choi JY et al. Post-debulking circulating tumor cell as a poor prognostic marker in advanced stage ovarian cancer: A prospective observational study // Medicine (Baltimore). 2019;98(20):e15354. doi:10.1097/MD.0000000000015354

Klymenko Y, Johnson J, Bos B et al. Heterogeneous Cadherin Expression and Multicellular Aggregate Dynamics in Ovarian Cancer Dissemination // Neoplasia. 2017;19(7):549–563. doi:10.1016/j.neo.2017.04.002

Blassl C, Kuhlmann JD, Webers A et al. Gene expression profiling of single circulating tumor cells in ovarian cancer — Establishment of a multi-marker gene panel // Mol Oncol. 2016;10(7):1030–42. doi:10.1016/j.molonc.2016.04.002

Prunier C, Baker D, Ten Dijke P, Ritsma L. TGF-β Family Signaling Pathways in Cellular Dormancy // Trends Cancer. 2019;5(1):66–78. doi:10.1016/j.trecan.2018.10.010

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021