Abstract
Introduction. Colorectal cancer ranks third in global cancer incidence. Liver metastases are present in 25 % of patients at initial diagnosis and develop in 50 % of patients following resection of the primary tumor.
Aim. To develop and evaluate a CT arteriography protocol for diagnosing colorectal cancer liver metastases following chemotherapy.
Materials and Methods. Seven patients with colorectal cancer and liver metastases after neoadjuvant chemotherapy were included. All patients underwent CT arteriography with intra-arterial administration of 40 ml iodinated contrast medium (300-320 mg iodine/ml) at 2 ml/s. Scanning was performed in two phases: arterial (22 seconds post-injection; n = 7) and portal venous (33-38 seconds; n = 6). Imaging assessment included capillary phase enhancement, metastasis visualization, peripheral rim enhancement, and severity of transient hepatic attenuation differences (THAD).
Results. Nineteen liver metastases were identified. Capillary phase enhancement was achieved in 4/7 patients (57 %) at 22 seconds and all 6 patients (100 %) at 33-38 seconds. Hypervascular rim enhancement was visualized in 15 non-calcified metastases (100 %) during both phases with consistent intensity. THAD was observed in all patients at 22 seconds, with reduced severity at 33-38 seconds.
Conclusion. The proposed CT arteriography technique provides 100 % visualization of peripheral rim enhancement in non-calcified colorectal liver metastases after chemotherapy. The 33-38 second scan timing is preferred due to consistent capillary phase achievement and reduced perfusion artifacts while maintaining diagnostic rim enhancement quality.
References
Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209-249.-DOI: https://doi.org/10.3322/caac.21660.
Van Cutsem E., Nordlinger B., Adam R., et al. European Colorectal Metastases Treatment Group. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer. 2006; 42(14): 2212-2221.-DOI: https://doi.org/10.1016/j.ejca.2006.04.012.
Choi S.H., Kim S.Y., Park S.H., et al. Diagnostic performance of CT, gadoxetate disodium-enhanced MRI, and PET/CT for the diagnosis of colorectal liver metastasis: Systematic review and meta-analysis. J Magn Reson Imaging. 2018; 47(5): 1237-1250.-DOI: https://doi.org/10.1002/jmri.25852.
Schulz A., Viktil E., Godt J.C., et al. Diagnostic performance of CT, MRI and PET/CT in patients with suspected colorectal liver metastases: the superiority of MRI. Acta Radiol. 2016; 57(9): 1040-1048.-DOI: https://doi.org/10.1177/0284185115617349.
Shah A.J., Callaway M., Thomas M.G., Finch-Jones M.D. Contrast-enhanced intraoperative ultrasound improves detection of liver metastases during surgery for primary colorectal cancer. HPB (Oxford). 2010; 12(3): 181-187.-DOI: https://doi.org/10.1111/j.1477-2574.2009.00141.x.
Costa P.F., Coelho F.F., Jeismann V.B., et al. Repeat hepatectomy for recurrent colorectal liver metastases: A comparative analysis of short- and long-term results. Hepatobiliary Pancreat Dis Int. 2022; 21(2): 162-167.-DOI: https://doi.org/10.1016/j.hbpd.2021.08.005.
Oldenburg A., Hohmann J., Foert E., et al. Detection of hepatic metastases with low MI real time contrast enhanced sonography and SonoVue. Ultraschall Med. 2005; 26(4): 277-284.-DOI: https://doi.org/10.1055/s-2005-858526.
Matsui O., Takashima T., Kadoya M., et al. Liver metastases from colorectal cancers: detection with CT during arterial portography. Radiology. 1987; 165(1): 65-69.-DOI: https://doi.org/10.1148/radiology.165.1.2819942.
Irie T., Tsushima Y., Terahata S., et al. Rim enhancement in colorectal metastases at CT during infusion hepatic arteriography. Does it represent liver parenchyma or live tumor cell zone? Acta Radiologica. 1997; 38(3): 416-421.-DOI: https://doi.org/10.1080/02841859709172093.
Cheng J., Qiu M., Zhang Y., et al. Enhanced rim on MDCT of colorectal liver metastases: assessment of ability to predict progression-free survival and response to bevacizumab-based chemotherapy. Am J Roentgenol. 2020; 215(6): 1377-1383.-DOI: https://doi.org/10.2214/AJR.19.22280.
Bluemke D.A., Soyer P., Fishman E.K. Nontumorous low-attenuation defects in the liver on helical CT during arterial portography: frequency, location, and appearance. Am J Roentgenol. 1995; 164(5): 1141-1145.-DOI: https://doi.org/10.2214/ajr.164.5.7717221.
Балахнин П.В., Шачинов Е.Г., Шмелев А.С., et al. Внутриартериальное Контрастирование для визуализации, навигации, мониторинга и оценки ответа на лечение при проведении чрескожной криоабляции гиповаскулярных метастазов в печени. Практическая Онкология. 2018; 19(1): 69-92.-URL: https://elibrary.ru/item.asp?id=32879064. [Balakhnin P.V., Shachinov E.G., Shmelev A.S., et al. Intra-arterial contrast enhancement for visualization, navigation, monitoring and treatment response assessment during percutaneous cryoablation of hypovascular liver metastases. Practical Oncology. 2018; 19(1): 69-92.-URL: https://elibrary.ru/item.asp?id=32879064 (In Rus)].
Gupta R., Cheung A.C., Bartling S.H., et al. Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics. 2008; 28(7): 2009-2022.-DOI: https://doi.org/10.1148/rg.287085004.
Pellerin O., Pereira H., Van Ngoc Ty C., et al. Is dual-phase C-arm CBCT sufficiently accurate for the diagnosis of colorectal cancer liver metastasis during liver intra-arterial treatment? Eur Radiol. 2019; 29(10): 5253-5263.-DOI: https://doi.org/10.1007/s00330-019-06173-0.
Kim H.J., Kim A.Y., Kim T.K., et al. Transient hepatic attenuation differences in focal hepatic lesions: dynamic CT features. Am J Roentgenol. 2005; 184(1): 83-90.-DOI: https://doi.org/10.2214/ajr.184.1.01840083.
Colagrande S., Centi N., La Villa G., Villari N. Transient hepatic attenuation differences. Am J Roentgenol. 2004; 183(2): 459-464.-DOI: https://doi.org/10.2214/ajr.183.2.1830459.
Semelka R., Hussain S., Marcos H., Woosley J. Perilesional enhancement of hepatic metastases: correlation between MR imaging and histopathologic findings-initial observations. Radiology. 2000; 215(1): 89-94.-DOI: https://doi.org/10.1148/radiology.215.1.r00mr2989.
Ozaki K., Higuchi S., Kimura H., Gabata T. Liver metastases: Correlation between Imaging Features and Pathomolecular Environments. RadioGraphics. 2022; 42(7): 1994-2013.-DOI: https://doi.org/10.1148/rg.220056.
Li L., Liu L.-Z., Xie Z.-M., et al. Multi-phasic CT arterial portography and CT hepatic arteriography improving the accuracy of liver cancer detection. World J Gastroenterol. 2004; 10(21): 3118-3121.-DOI: https://doi.org/10.3748/wjg.v10.i21.3118.
Inoue E., Fujita M., Hosomi N., et al. Double phase CT arteriography of the whole liver in the evaluation of hepatic tumors. J Comput Assist Tomogr. 1998; 22(1): 64.-DOI: https://doi.org/10.1097/00004728-199801000-00011.
Yamasaki M., Furukawa A., Murata K., Morita R. Transient hepatic attenuation difference (THAD) in patients without neoplasm: frequency, shape, distribution, and causes. Radiat Med. 1999; 17(2): 91-96.
Colagrande S., Carmignani L., Pagliari A., Capaccioli L., et al. Transient hepatic attenuation differences (THAD) not connected to focal lesions. Radiol Med. 2002; 104(1-2): 25-43.
Nelson R.C., Thompson G.H., Chezmar J.L., et al. CT during arterial portography: diagnostic pitfalls. Radiographics. 1992; 12(4): 705-718.-DOI: https://doi.org/10.1148/radiographics.12.4.1321980.
Roth J., Wallner B., Safi F. Arterial perfusion abnormalities of the liver after hepatic arterial infusion chemotherapy and their correlation with changes in the metastases: evaluation with CT and angiography. AJR Am J Roentgenol. 1989; 153(4): 751-754.-DOI: https://doi.org/10.2214/ajr.153.4.751.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025
