Канцерогенная опасность «неканцерогенных» соединений
pdf

Ключевые слова

канцерогенез,
не канцерогенные ксенобиотики,
загрязнение биосферы,
профилактика рака

Как цитировать

Белицкий, Г., Кирсанов, К. ., Кривошеева, Л., Лесовая, Е., Соленова, Л., & Якубовская, М. (2022). Канцерогенная опасность «неканцерогенных» соединений. Вопросы онкологии, 68(1), 7–16. https://doi.org/10.37469/0507-3758-2022-68-1-7-16

Аннотация

Благодаря высоким темпам индустриализации в биосфере растет содержание как полных канцерогенов, так и соединений, не способных самостоятельно индуцировать опухоль, но, как выяснилось в последнее время, вызывающих в клетке изменения, соответствующие отдельным звеньям в цепи канцерогенеза. Часть из этих соединений представляет большой экономический интерес, в связи с чем международное соглашение разрешает их неограниченное производство. В то же время при совместном действии эти «полуканцерогены» могут либо вызвать злокачественную трансформацию, либо стимулировать действие убиквитарно распространенных канцерогенов. Насыщение биосферы такими ксенобиотиками может быть одним из универсальных факторов наблюдаемого роста онкологической заболеваемости. В связи с этим практика оценки канцерогенной опасности химических соединений по механистическим признакам должна быть изменена, поскольку не учитывает действие канцерогенного фона окружающей среды. Эксперименты in vitro следует проводить не только в стандартных очищенных средах, но и с добавлением как отдельных, так и суммы основных компонентов биосферного загрязнения в концентрациях, обнаруживаемых, например, в крови из пуповины новорожденных и материнском молоке. Такие добавки необходимо создавать и стандартизовать как это принято для эталонных образцов.

https://doi.org/10.37469/0507-3758-2022-68-1-7-16
pdf

Библиографические ссылки

Bray F, Ferlay J, Soerjomataram I et al. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA // Cancer J. Clin. 2018;68(6):394–424. doi:10.3322/caac.21492. Epub 2018 Sep 12

Состояние онкологической помощи населению России в 2019 году / Под ред. А.Д.Каприна, В.В.Старинского, А.О.Шахзадовой. М.: МНИОИ им. П.А.Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020 [Cancer care in Russia in 2019 / Ed. by A.D.Kaprin, V.V.Starinsky, A.O.Shakhzadova. Moscow: MNIOI im. P.A.Gertsena — filial FGBU «NMITs radiologii» Minzdrava Rossii, 2020 (In Russ.)].

Статистика злокачественных новообразований в России и СНГ в 2012 г. / Под ред. М.И.Давыдова, Е.М.Аксель. М.: Издательская группа РОНЦ, 2014 [Statistics of malignant neoplasms in Russia and CIS in 2012 / Ed. by M.I.Davydov, E.M.Aksel. Moscow: Izdatel'skaya gruppa RONTs, 2014 (In Russ.)].

Состояние онкологической помощи населению России в 2018 году / Под ред. А.Д.Каприна, В.В.Старинского, Г.В.Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019 [Cancer care in Russia in 2018 / Ed. by A.D.Kaprin, V.V.Starinsky, G.V.Petrova. Moscow: MNIOI im. P.A.Gertsena — filial FGBU «NMITs radiologii» Minzdrava Rossii, 2019 (In Russ.)].

Министерство природных ресурсов и экологии Российской Федерации. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2019 году». М., 2020 [Ministry of Natural Resources and Environment of the Russian Federation, Government report «About the environmental condition and care in Russian Federation in 2019». Moscow, 2020 (In Russ.)].

Левинский С.С., Хесина А.Я., Кривошеева Л.В., Хитрово И.А. (1998) Способ качественного и количественного определения в сложных смесях и экстрактах нитропроизводных полициклических ароматических углеводородов, имеющих фосфоресценцию в замороженных растворах. Патент РФ№ 2122199 [Levinsky S.S., Khesina A.Ya., Krivosheeva L.V., Khitrovo I.A. (1998) The procedure of qualitation and quantification of nitroderivatives of polycyclic aromatic carbohydrates phosphorescenting in frozen solution in multicomponent mixtures and extracts. Patent of Russian Federation № 2122199 (In Russ.)].

Кривошеева Л.В., Хитрово И.А., Оглоблина А.М. и др. Интегральная оценка мутагенного и канцерогенного потенциала дымовых выбросов при термическом уничтожении биомедицинских отходов // Фундаментальные исследования. 2014;10(8):1514–1523 [Krivosheeva L.V., Khitrovo I.A., Ogloblina A.M. et al. Integral evaluation of mutagenic and carcinogenic potential of smoke emissions in the course of thermic decomposition of biomedical waste // Fundamental'nye issledovaniya. 2014;10(8):1514–1523 (In Russ.)].

Christiani DC. Combating environmental causes of cancer // N. Engl. J. Med. 2011;364:791–793. doi:10.1056/NEJMp1006634

Goodson WH, Lowe L, Carpenter DO et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead // Carcinogenesis. 2015;36(Suppl. 1):S254–S296. doi:10.1093/carcin/bgv039 Review S254

La Merrill MA, Vandenberg LN, Smith MT et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification // Nat. Rev. Endocrinol. 2020;16:S45–56. doi:10.1038/s41574-019-0273-8

Preston RJ. Extrapolations are the Achilles heel of risk assessment // Mutat. Res. 2005;589(3):153–157. doi:10.1016/j.mrrev.2005.03.001

Guyton KZ, Kyle AD, Aubrecht J et al. Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches // Mutat. Res. 2008;681(2–3):230–240. doi:10.1016/j.mrrev.2008.10.001

Langie S, Koppen G, Desaulniers D et al. Causes of genome instability: the effect of low dose chemical exposures in modern society // Carcinogenesis. 2015;36(Suppl. 1):S61–S88. doi:10.1093/carcin/bgv031

Yildiz A, Kaya Y, Tanriverdi O. Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association With Cancer Prevention // J. Cancer Prev. 2019;24(3):146–154. doi:10.15430/JCP.2019.24.3.146

Chervona Y, Arita A, Costa M. Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium // Metallomics. 2012;4:619–627. doi:10.1039/c2mt20033c

Kuempel ED, Jaurand M-C, Møller P et al. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans // Crit. Rev. Toxicol. 2017;47(1):1–58. doi:10.1080/10408444.2016.1206061

Winkler HC, Notter T, Meyer U, Naegeli H. Critical review of the safety assessment of titanium dioxide additives in food // J. Nanobiotechnology. 2018;16:51. doi:10.1186/s12951-018-0376-8

Ribeiro-Varandas E, Pereira HF, Monteiro S et al. Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells // Int. J. Mol. Sci. 2014;15(9):15791–15805. doi:10.3390/ijms150915791

Vela-Corcía D, Romero D, de Vicente A, Pérez-García A. Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance // Sci Rep. 2018;8:7161. doi:10.1038/s41598-018-25336-5

Canal-Raffin M, L'Azou B, Martinez B et al. Physicochemical characteristics and bronchial epithelial cell cytotoxicity of Folpan 80 WG® and Myco 500®, two commercial forms of folpet // Part. Fibre Toxicol. 2007;4:8. doi:10.1186/1743-8977-4-8

Lan J, Rahman SM, Gou N et al. Genotoxicity Assessment of Drinking Water Disinfection Byproducts by DNA Damage and Repair Pathway Profiling Analysis // Environ, Sci. Technol. 2018;52(11):6565–6575. doi:10.1021/acs.est.7b06389

Kang KS, Wilson MR, Hayashi T et al. Inhibition of gap junctional intercellular communication in normal human breast epithelial cells after treatment with pesticides, PCBs, and PBBs, alone or in mixtures // Environ. Health Perspect. 1996;104(2):192–200. doi:10.1289/ehp.96104192

Lin ZX, Kavanagh T, Trosko JE, Chang CC. Inhibition of gap junctional intercellular communication in human teratocarcinoma cells by organochlorine pesticides // Toxicol. Appl. Pharmacol. 1986;83:10–19. doi:10.1016/0041-008x(86)90318-2

El-Fattah Ibrahim SA, Abudu A, Jonhson E et al. The role of AP-1 in self-sufficient proliferation and migration of cancer cells and its potential impact on an autocrine/paracrine loop // Oncotarget. 2018;9(76):34259–34278. doi:10.18632/oncotarget.26047

Kawada M, Inoue H, Ohba S et al. Stromal Cells Positively and Negatively Modulate the Growth of Cancer Cells: Stimulation via the PGE2-TNFα-IL-6 Pathway and Inhibition via Secreted GAPDH-E-Cadherin Interaction // PLoS One. 2015;10(3):e0119415. doi:10.1371/journal.pone.0119415

Skobe M, Fusenig NE. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc // Natl Acad. Sci. USA. 1998;95:1050–1055. doi:10.1073/pnas.95.3.1050

Seeger B, Klawonn F, Nguema Bekale B, Steinberg P. Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β // PLoS One. 2016;11(1):e0147490. doi:10.1371/journal.pone.0147490

Heindel JJ, Belcher S, Flaws JA et al. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies // Reprod. Toxicol. 2020;98:29–60. doi:10.1016/j.reprotox.2020.05.014

Giuliani A, Zuccarini M, Cichelli A et al. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact // Int. J. Environ. Res. 2020;17(16):5655. doi:10.3390/ijerph17165655

Zhao JX, Hu J, Zhu M-J, Du M. Trenbolone enhances myogenic differentiation by enhancing β-catenin signaling in muscle-derived stem cells of cattle // Domest. Anim. Endocrinol. 2011;40:222–229. doi:10.1016/j.domaniend.2011.01.004

Ibrahim MAA, Elbakry R.H, Bayomy N.A. Effect of bisphenol A on morphology, apoptosis and proliferation in the resting mammary gland of the adult albino rat // Int. J. Exp. Pathol. 2016;97(1):27–36. doi:10.1111/iep.12164

Dairkee SH, Luciani-Torres MG, Moore DH, Goodson WH. Bisphenol-A-induced inactivation of the p53 axis underlying deregulation of proliferation kinetics, and cell death in nonmalignant human breast epithelial cells // Carcinogenesis. 2013;34:703–712. doi:10.1093/carcin/bgs379

Narayanan KB, Ali M, Barclay BJ, Cheng QS. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death // Carcinogenesis. 201536(Suppl. 1):S89–S110. doi:10.1093/carcin/bgv032

Giuliani A, Zuccarini M, Cichelli A et al. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact // Int. J. Environ. Res. 2020;17(16):5655. doi:10.3390/ijerph17165655

Rubini E, Altieri F, Chichiarelli S et al. STAT3, a Hub Protein of Cellular Signaling Pathways, Is Triggered by β-Hexaclorocyclohexane // Int. J. Mol. Sci. 2018;19(7):1–15. doi:10.3390/ijms19072108

Lushchak VI, Matviishyn TM, Husak VV et al. Pesticide toxicity: a mechanistic approach // EXCLI J. 2018;17:1101–1136. doi:10.17179/excli2018-1710

Cimmino I, Fiory F, Perruolo G et al. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease // Int. J. Mol. Sci. 2020;21(16):5761. doi:10.3390/ijms21165761

Thueson LE, Emmons TR, Browning DL et al. In vitro exposure to the herbicide atrazine inhibits T cell activation, proliferation, and cytokine production and significantly increases the frequency of Foxp3+ regulatory T cells // Toxicol. Sci. 2015;143:418–429. doi:10.1093/toxsci/kfu242

Gore A, Chappell VA, Fenton SE et al. T. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals // Endocr Rev. 2015;36(6):E1–E150. doi:10.1210/er.2015-1010

Hu Z, Brooks SA, Dormoy V et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis // Carcinogenesis. 2015;36(Suppl. 1):S184–S202. doi:10.1093/carcin/bgv036

Ding SZ et al. Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells // Toxicol. Appl. Pharmacol. 2013;269:61–71. doi: 10.1016/j.taap.2013.03.006

Liu S, Yang Y-X, Li X-L et al. Polychlorinated biphenyls (PCBs) enhance metastatic properties of breast cancer cells by activating Rho-associated kinase (ROCK) // PLoS One. 2010;5:e11272. doi:10.1371/journal.pone.0011272

Ochieng J, Nangami GN, Ogunkua O et al. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis // Carcinogenesis. 2015;36(Suppl. 1):S128–S159. doi:10.1093/carcin/bgv034

Kravchenko J, Corsin E, Williams MA et al. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions // Carcinogenesis. 2015;36(Suppl. 1):111–127. doi:10.1093/carcin/bgv033

Holásková I, Elliott M, Brundage K et al. Long-term Immunotoxic Effects of Oral Prenatal and Neonatal Atrazine Exposure // Toxicol. Sci. 2019;168(2):497–507. doi: 10.1093/toxsci/kfz00

Fucic A, Galea KS, Duca RC et al. Potential Health Risk of Endocrine Disruptors in Construction Sector and Plastics Industry: A New Paradigm in Occupational Health // Int J Environ Res Public Health. 2018;15(6):1229. doi:10.3390/ijerph15061229

Wissem Mnif, Aziza Ibn Hadj Hassine, Aicha Bouaziz et al. Effect of Endocrine Disruptor Pesticides: A Review // Int J Environ Res Public Health. 2011;8(6):2265–2303. doi:10.3390/ijerph8062265

Fabien Lagarde, Claire Beausoleil, Scott M Belcher et al. Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment // Environ Health. 2015;14:13. doi:10.1186/1476-069X-14-13

Reregistration eligibility decision for Vinclozolin. Case 2740. (2000), EPA 738-R-00-023

Wu X-J, Lu W-Q, Roos PH, Mersch-Sundermann V. Vinclozolin, a widely used fungizide, enhanced BaP-induced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression // Toxicol. Let. 2005;159:83–88. doi:10.1016/j.toxlet.2005.04.010

Wei W, Zhanga C, Liua A-L et al. PCB126 enhanced the genotoxicity of BaP in HepG2 cells by modulating metabolic enzyme and DNA repair activities // Toxicol. Let. 2009;189:91–95. doi:10.1016/j.toxlet.2009.03.009

Sonavane M, Gassman NR. Bisphenol A co-exposure effects: A key factor in understanding BPA’s complex mechanism and health outcomes // Crit. Rev. Toxicol. 2019;49(5):371–386. doi:10.1080/10408444.2019.1621263

Dairkee SH, Luciani-Torres G, Moore DH et al. A Ternary Mixture of Common Chemicals Perturbs Benign Human Breast Epithelial Cells More Than the Same Chemicals Do Individually // Toxicol. Sci. 2018;165(1):131–144. doi:10.1093/toxsci/kfy126

Злокачественные новообразования в России в 2018 г. (заболеваемость и смертность) / Под ред. А.Д.Каприна, В.В.Старинского, Г.В.Петровой. М., 2019 [Malignant neoplasms in Russia in 2018 (morbidity and mortality) / Ed. by A.D.Kaprin, V.V.Starinsky, G.V.Petrova. Moscow, 2019 (In Russ.)].

Steliarova-Foucher E, Colombet M, Ries LAG et al. IICC-3 contributors. International incidence of childhood cancer, 2001-10: A population-based registry study // Lancet Oncol. 2017;18:719–731. doi:10.1016/S1470-2045(17)30186-9

Lafiura KM, Bielawski DM, Posecion NC et al. Association between prenatal pesticide exposures and the generation of leukemia-associated t(8;21) // Pediatr. Blood Cancer. 2007;49(5):624–628. doi:10.1002/pbc.21283

Hernández AF, Menéndez P. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms // Int. J. Mol. Sci. 2016;17(4):461. doi:10.3390/ijms17040461

Bailey HD, Fritschi L, Infante-Rivard C et al. Parental occupational pesticide exposure and the risk of childhood leukemia in the offspring: Findings from the Childhood Leukemia International Consortium // Int. J. Cancer. 2014;135(9):2157–2172. doi:10.1002/ijc.28854

Ockleford C, Adriaanse P, Bennekou S. Scientific opinion on pesticides in foods for infants and young children. EFSA Panel on Plant Protection Products and their Residues (PPR) // EFSA J. 2018;16(6):e05286. doi:10.2903/j.efsa.2018.5286

Sonavanea M, Gassmana NR. Bisphenol A co-exposure effects: A key factor in understanding BPA’s complex mechanism and health outcomes // Crit. Rev. Toxicol. 2019;49(5):371–386. doi:10.1080/10408444.2019.1621263

Prins GS, Hu W-Y, Xie L et al. Evaluation of Bisphenol A (BPA) Exposures on Prostate Stem Cell Homeostasis and Prostate Cancer Risk in the NCTR-Sprague-Dawley Rat: An NIEHS/FDA CLARITY-BPA // Consortium Study Environ, Health Perspect. 2018;126(11):117001. doi: 10.1289/EHP3953

Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-α mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells // Environ. Health Perspect. 2005;113:431–439. doi: 10.1289/ehp.7505

Rosenfeld CS, Cooke PS. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects // J. Steroid Biochem. Mol. Biol. 2019;187:106–117. doi: 10.1016/j.jsbmb.2018.11.007

Welshons WV, Thayer KA, Judy BM et al. Large effects from small exposures: I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity // Environ. Health Perspect. 2003;111:994–1006. doi: 10.1289/ehp.5494

La Merrill MA, Vandenberg LN, Smith MT et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification // Nature Reviews Endocrinology. 2020;16:S45–56. doi:10.1038/s41574-019-0273-8

Pastor-Barriuso R, Fernandez MF, Castano-Vinyals G et al. Total effective xenoestrogen burden in serum samples and risk for breast cancer in a population-based multicase-control study in Spain // Environ. Health Perspect. 2016;124:1575–1582. doi: 10.1289/ehp157

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2021