Молекулярно-генетический профиль колоректального рака: клиническое значение типичных и агностических мутаций
##article.numberofdownloads## 120
##article.numberofviews## 207
pdf (Русский)

关键词

колоректальный рак
атипичные мутации
агностические мутации
прогностические биомаркеры

How to Cite

Телетаева, Г. М., Дегтярёва, Е. А., Семенова, А. И., Семиглазова, Т. Ю., Малыгин, А. Ю., Иевлева, А. Г., & Имянитов , Е. Н. (2024). Молекулярно-генетический профиль колоректального рака: клиническое значение типичных и агностических мутаций. VOPROSY ONKOLOGII, 70(5), 854–863. https://doi.org/10.37469/0507-3758-2024-70-5-854-863

摘要

Молекулярно-генетическое исследование опухолевого материала при колоректальном раке (КРР) необходимо для обоснованного выбора лекарственной терапии. Решающее значение для пациентов с диссеминированным процессом имеет оценка статуса генов RAS, BRAF, HER2, а также микросателлитной нестабильности (MSI). К более редко встречающимся молекулярным маркерам, которые могут повлиять на выбор терапевтического подхода, относятся мутации в гене POLE и перестройки с участием тирозинкиназ NTRK1-3, RET и ALK. В настоящем обзоре представлена краткая информация о встречаемости перечисленных генетических нарушений при КРР, их ассоциациях с клинико-морфологическими параметрами, а также их влиянии на прогноз заболевания.

https://doi.org/10.37469/0507-3758-2024-70-5-854-863
##article.numberofdownloads## 120
##article.numberofviews## 207
pdf (Русский)

参考

Hardiman K.M. Update on sporadic colorectal cancer genetics. Clin Colon Rectal Surg. 2018; 31(3): 147-152.-DOI: https://doi.org/10.1055/s-0037-1602234.

Benson A.B., Venook A.P., Adam M., et al. Colon cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2024; 22(2 D): e240029.-DOI: https://doi.org/10.6004/jnccn.2024.0029.

Ambrosini M., Rousseau B., Manca P., et al. Immune checkpoint inhibitors for POLE or POLD1 proofreading-deficient metastatic colorectal cancer. Ann Oncol. 2024; 35(7): 643-655.-DOI: https://doi.org/10.1016/j.annonc.2024.03.009.

Mulkidjan R.S., Saitova E.S., Preobrazhenskaya EV, et al. ALK, ROS1, RET and NTRK1-3 Gene fusions in colorectal and non-colorectal microsatellite-unstable cancers. Int J Mol Sci. 2023; 24(17):13610.-DOI: https://doi.org/10.3390/ijms241713610.

Martianov A.S., Mitiushkina N.V., Ershova A.N., et al. KRAS, NRAS, BRAF, HER2 and MSI status in a large consecutive series of colorectal carcinomas. Int J Mol Sci. 2023; 24(5): 4868.-DOI: https://doi.org/10.3390/ijms24054868.

Cercek A., Braghiroli M.I., Chou J.F., et al. clinical features and outcomes of patients with colorectal cancers harboring NRAS mutations. Clin Cancer Res. 2017; 23(16): 4753-4760.-DOI: https://doi.org/10.1158/1078-0432.CCR-17-0400.

Modest D.P., Ricard I., Heinemann V., et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol. 2016; 27(9): 1746-53.-DOI: https://doi.org/10.1093/annonc/mdw261.

Giampieri R., Lupi A., Ziranu P., et al. Retrospective comparative analysis of KRAS G12C vs. other KRAS mutations in mCRC patients treated with first-line chemotherapy doublet + bevacizumab. Front Oncol. 2021; 11: 736104.-DOI: https://doi.org/10.3389/fonc.2021.736104.

Van de Haar J., Ma X., Ooft S.N., et al. Codon-specific KRAS mutations predict survival benefit of trifluridine/tipiracil in metastatic colorectal cancer. Nat Med. 2023; 29(3): 605-614.-DOI: https://doi.org/10.1038/s41591-023-02240-8.

Henry J.T., Coker O., Chowdhury S., et al. Comprehensive clinical and molecular characterization of KRASG12C-mutant colorectal cancer. JCO Precis Oncol. 2021; 5: PO.20.00256.-DOI: https://doi.org/10.1200/PO.20.00256.

Van 't Erve I., Wesdorp N.J., Medina J.E., et al. KRAS A146 mutations are associated with distinct clinical behavior in patients with colorectal liver metastases. JCO Precis Oncol. 2021; 5: PO.21.00223.-DOI: https://doi.org/10.1200/PO.21.00223.

Tonello M., Baratti D., Sammartino P., et al. Prognostic value of specific KRAS mutations in patients with colorectal peritoneal metastases. ESMO Open. 2024; 9(4): 102976.-DOI: https://doi.org/10.1016/j.esmoop.2024.102976.

Osumi H., Takashima A., Ooki A., et al. A multi-institutional observational study evaluating the incidence and the clinicopathological characteristics of NeoRAS wild-type metastatic colorectal cancer. Transl Oncol. 2023; 35: 101718.-DOI: https://doi.org/10.1016/j.tranon.2023.101718.

Albuquerque J., Neto da Silva D., Padrão T., et al. Loss of RAS mutations in liquid biopsies of patients with multi-treated metastatic colorectal cancer. Oncologist. 2024; 29(3): e337-e344.-DOI: https://doi.org/10.1093/oncolo/oyad299.

Федянин М.Ю., Эльснукаева Х.М., Демидова И.А., et al. Колоректальный рак с мутацией в гене BRAF в Российской Федерации: эпидемиология и клинические особенности. Результаты многоцентрового исследования. Medical Council = Meditsinskiy sovet. 2021; (4S): 52-63.-DOI: https://doi.org/10.21518/2079-701X-2021-4S-52-63. [Fedyanin M.Yu., Elsnukaeva Kh.M., Demidova I.A., et al. Colorectal cancer with a mutation in the BRAF gene in the Russian Federation: epidemiology and clinical features. Results of a multicentre study. Medical Council. 2021; (4S): 52-63.-DOI: https://doi.org/10.21518/2079-701X-2021-4S-52-63. (In Rus)].

Sahin I.H., Klostergaard J. BRAF mutations as actionable targets: a paradigm shift in the management of colorectal cancer and novel avenues. JCO Oncol Pract. 2021; 17(12): 723-730.-DOI: https://doi.org/10.1200/OP.21.00160.

Jones J.C., Renfro L.A., Al-Shamsi H.O., et al. Non-V600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017; 35(23): 2624-2630.-DOI: https://doi.org/10.1200/JCO.2016.71.4394.

Tran B., Kopet S., Tie J., et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011; 117(20): 4623-32.-DOI: https://doi.org/10.1002/cncr.26086.

Yokota T., Ura T., Shibata N., et al. BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br J Cancer. 2011; 104(5): 856-62.-DOI: https://doi.org/10.1038/bjc.2011.19.

Petrelli F., Arru M., Colombo S., et al. BRAF mutations and survival with surgery for colorectal liver metastases: A systematic review and meta-analysis. Eur J Surg Oncol. 2024; 50(6): 108306.-DOI: https://doi.org/10.1016/j.ejso.2024.108306.

Sinicrope F.A., Shi Q., Allegra C.J., et al. Association of DNA mismatch repair and mutations in BRAF and KRAS with survival after recurrence in stage III colon cancers: a secondary analysis of 2 randomized clinical trials. JAMA Oncol. 2017; 3(4): 472-480.-DOI: https://doi.org/10.1001/jamaoncol.2016.5469.

Karki S., Sun W., Madan R., et al. Microsatellite instability with BRAF V600E associated with delayed presentation but poor survival in stage III colorectal cancer. Fortune J Health Sci. 2023; 6(2): 167-173.-DOI: https://doi.org/10.26502/fjhs.112.

Cannon T.L., Randall J.N., Sokol E.S., et al. Concurrent BRAFV600E and BRCA mutations in MSS metastatic colorectal cancer: prevalence and case series of mCRC patients with prolonged OS. Cancer Treat Res Commun. 2022; 32:100569.-DOI: https://doi.org/10.1016/j.ctarc.2022.100569.

Miricescu D., Totan A., Stanescu-Spinu II, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2020; 22(1): 173.-DOI: https://doi.org/10.3390/ijms22010173.

Van Cutsem E., Bang Y.J., Feng-Yi F., et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer. 2015; 18(3): 476-84.-DOI: https://doi.org/10.1007/s10120-014-0402-y.

Rottmann D., Snir O.L., Wu X., et al. HER2 testing of gynecologic carcinosarcomas: tumor stratification for potential targeted therapy. Mod Pathol. 2020; 33(1): 118-127.-DOI: https://doi.org/10.1038/s41379-019-0358-x.

Galdy S., Lamarca A., McNamara M.G., et al. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: a potential therapeutic target? Cancer Metastasis Rev. 2017; 36(1): 141-157.-DOI: https://doi.org/10.1007/s10555-016-9645-x.

Singh H., Kang A., Bloudek L., et al. Systematic literature review and meta-analysis of HER2 amplification, overexpression, and positivity in colorectal cancer. JNCI Cancer Spectr. 2024; 8(1): pkad082.-DOI: https://doi.org/10.1093/jncics/pkad082.

Ross J.S., Fakih M., Ali S.M., et al. Targeting HER2 in colorectal cancer: The landscape of amplification and short variant mutations in ERBB2 and ERBB3. Cancer. 2018; 124(7):1358-1373.-DOI: https://doi.org/10.1002/cncr.31125.

Tan R.Y.C., Camat M.D., Ng M., et al. HER2 positive rates are enriched amongst colorectal cancer brain metastases: a study amongst 1920 consecutive patients. Ann Oncol. 2018; 29(7): 1598-1599.-DOI: https://doi.org/10.1093/annonc/mdy156.

Raghav K., Loree J.M., Morris J.S., et al. Validation of HER2 amplification as a predictive biomarker for anti-epidermal growth factor receptor antibody therapy in metastatic colorectal cancer. JCO Precis Oncol. 2019; 3: 1-13.-DOI: https://doi.org/10.1200/PO.18.00226.

Bekaii-Saab T.S., Lach K., Hsu L.I., et al. Impact of anti-EGFR therapies on HER2-positive metastatic colorectal cancer: a systematic literature review and meta-analysis of clinical outcomes. Oncologist. 2023; 28(10): 885-893.-DOI: https://doi.org/10.1093/oncolo/oyad200.

Taieb J., Svrcek M., Cohen R., et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur J Cancer. 2022; 175: 136-157.-DOI: https://doi.org/10.1016/j.ejca.2022.07.020.

Mei W.J., Mi M., Qian J., et al. Clinicopathological characteristics of high microsatellite instability/mismatch repair-deficient colorectal cancer: A narrative review. Front Immunol. 2022; 13: 1019582.-DOI: https://doi.org/10.3389/fimmu.2022.1019582.

Keshinro A., Ganesh K., Vanderbilt C., et al. Characteristics of mismatch repair-deficient colon cancer in relation to mismatch repair protein loss, hypermethylation silencing, and constitutional and biallelic somatic mismatch repair gene pathogenic variants. Dis Colon Rectum. 2023; 66(4): 549-558.-DOI: https://doi.org/10.1097/DCR.0000000000002452.

Popat S., Hubner R., Houlston R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005; 23(3): 609-18.-DOI: https://doi.org/10.1200/JCO.2005.01.086.

Sargent D.J., Marsoni S., Monges G., et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010; 28(20): 3219-26.-DOI: https://doi.org/10.1200/JCO.2009.27.1825.

Roth A.D., Delorenzi M., Tejpar S., et al. Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J Natl Cancer Inst. 2012; 104(21): 1635-46.-DOI: https://doi.org/10.1093/jnci/djs427.

Venderbosch S., Nagtegaal I.D., Maughan T.S., et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 2014; 20(20): 5322-30.-DOI: https://doi.org/10.1158/1078-0432.CCR-14-0332.

San-Román-Gil M., Torres-Jiménez J., Pozas J., et al. Current landscape and potential challenges of immune checkpoint inhibitors in microsatellite stable metastatic colorectal carcinoma. Cancers (Basel). 2023; 15(3): 863.-DOI: https://doi.org/10.3390/cancers15030863.

Bourdais R., Rousseau B., Pujals A., et al. Polymerase proofreading domain mutations: New opportunities for immunotherapy in hypermutated colorectal cancer beyond MMR deficiency. Crit Rev Oncol Hematol. 2017; 113: 242-248.-DOI: https://doi.org/10.1016/j.critrevonc.2017.03.027.

Garmezy B., Gheeya J., Lin H.Y., et al. Clinical and molecular characterization of POLE mutations as predictive biomarkers of response to immune checkpoint inhibitors in advanced cancers. JCO Precis Oncol. 2022; 6:e2100267.-DOI: https://doi.org/10.1200/PO.21.00267.

León-Castillo A., Britton H., McConechy M.K., et al. Interpretation of somatic POLE mutations in endometrial carcinoma. J Pathol. 2020; 250(3): 323-335.-DOI: https://doi.org/10.1002/path.5372.

Mo S., Ma X., Li Y., et al. Somatic POLE exonuclease domain mutations elicit enhanced intratumoral immune responses in stage II colorectal cancer. J Immunother Cancer. 2020; 8(2): e000881.-DOI: https://doi.org/10.1136/jitc-2020-000881.

Briggs S., Tomlinson I. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers. J Pathol. 2013; 230(2): 148-53.-DOI: https://doi.org/10.1002/path.4185.

Dong S., Zakaria H., Hsiehchen D. Non-exonuclease domain POLE mutations associated with immunotherapy benefit. Oncologist. 2022; 27(3): 159-162.-DOI: https://doi.org/10.1093/oncolo/oyac017.

Kawai T., Nyuya A., Mori Y., et al. Clinical and epigenetic features of colorectal cancer patients with somatic POLE proofreading mutations. Clin Epigenetics. 2021; 13(1): 117.-DOI: https://doi.org/10.1186/s13148-021-01104-7.

Domingo E., Freeman-Mills L., Rayner E., et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol. 2016; 1(3): 207-216.-DOI: https://doi.org/10.1016/S2468-1253(16)30014-0.

Fabrizio D.A., George T.J. Jr, Dunne R.F., et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol. 2018; 9(4): 610-617.-DOI: https://doi.org/10.21037/jgo.2018.05.06.

Stenzinger A., Pfarr N., Endris V., et al. Mutations in POLE and survival of colorectal cancer patients--link to disease stage and treatment. Cancer Med. 2014; 3(6): 1527-38.-DOI: https://doi.org/10.1002/cam4.305.

Bando H., Ohtsu A., Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol. 2023; 20(5): 306-322.-DOI: https://doi.org/10.1038/s41575-022-00736-1.

Romanko A.A., Mulkidjan R.S., Tiurin V.I., et al. Cost-efficient detection of NTRK1/2/3 gene fusions: single-center analysis of 8075 tumor samples. Int J Mol Sci. 2023; 24(18): 14203.-DOI: https://doi.org/10.3390/ijms241814203.

Pietrantonio F., Di Nicolantonio F., Schrock A.B., et al. RET fusions in a small subset of advanced colorectal cancers at risk of being neglected. Ann Oncol. 2018; 29(6): 1394-1401.-DOI: https://doi.org/10.1093/annonc/mdy090.

Lai A.Z., Schrock A.B., Erlich R.L., et al. Detection of an ALK fusion in colorectal carcinoma by hybrid capture-based assay of circulating tumor DNA. Oncologist. 2017; 22(7): 774-779.-DOI: https://doi.org/10.1634/theoncologist.2016-0376.

Lasota J., Chłopek M., Wasąg B., et al. Colorectal adenocarcinomas harboring ALK fusion genes: a clinicopathologic and molecular genetic study of 12 cases and review of the literature. Am J Surg Pathol. 2020; 44(9): 1224-1234.-DOI: https://doi.org/10.1097/PAS.0000000000001512.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024