Источники NK-клеток для CAR-технологий
pdf

Ключевые слова

CAR NK-клеточная терапия
химерный антигенный рецептор
адоптивная терапия
иммунотерапия
источники NK-клеток

Как цитировать

Грибкова, И., & Завьялов, А. (2023). Источники NK-клеток для CAR-технологий. Вопросы онкологии, 69(4), 616–622. https://doi.org/10.37469/0507-3758-2023-69-4-616-622

Аннотация

В последние годы клеточная терапия представляется многообещающим подходом к лечению гемобластозов, показывая поразительные результаты в различных клинических исследованиях. Особенные надежды возлагаются на CAR-клетки — клетки с химерными антигенными рецепторами.

Наиболее изученной и показавшей значимые клинические результаты является терапия CAR Т-лимфоцитами. Однако существенными проблемами остаются сложности производства CAR Т-клеток из аутологичных материалов и наличие серьезных побочных эффектов при лечении данным методом. Альтернативой применения Т-клеток может стать использование натуральных киллеров (NK-клеток) — клеток врожденного иммунитета, обладающих противоопухолевыми свойствами. Терапия CAR NK-клетками может оказаться более привлекательной, чем терапия CAR Т-клетками, вследствие меньшей токсичности и возможности использования аллогенных материалов. Однако данный метод только развивается и сопряжен со сложностями производства достаточного для инфузии количества CAR NK-клеток, обладающих противоопухолевой активностью, и их модификации. Для преодоления этих проблем используют NK-клетки, полученные из различных источников, подвергая их разнообразным воздействиям. В обзоре представлены особенности NK-клеток, полученных из периферической крови взрослого человека, пуповинной крови, эмбриональных стволовых клеток человека, индуцированных плюрипотентных стволовых клеток и линии клеток NK-92. Обсуждаются их характеристики в контексте применения для CAR-технологий.

https://doi.org/10.37469/0507-3758-2023-69-4-616-622
pdf

Библиографические ссылки

Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019;20(1):31-42. doi:10.1016/S1470-2045(18)30864-7.

Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439-448. doi:10.1056/NEJMoa1709866.

Jacobson C, Chavez JC, Sehgal AR, et al. Primary analysis of zuma-5: A phase 2 study of axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). Blood. 2020;136(Supplement 1):40–1. doi:10.1182/blood-2020-136834.

Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705-716. doi:10.1056/NEJMoa2024850.

Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;67(3):350-360 [Gribkova IV, Zavyalov AA. Chimeric antigen receptor T‑cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Voprosy onkologii. 2021;67(3):350-60 (In Russ.)]. doi:10.37469/0507-3758-2021-67-3-350-360.

Штыров Е.М., Зотов Р.А., Лапштаева А.В. CAR T-клеточная терапия как современный метод лечения онкологических заболеваний. Бюллетень науки и практики. 2019;5:121-127. [Shtyrov E., Zotov R., Lapshtaeva A. CAR T-cell therapy as a modern treatment for cancer. Bulletin of Science and Practice. 2019;5:121-127 (In Russ.)]. doi:10.33619/2414-2948/42.

Makita S, Imaizumi K, Kurosawa S, et al. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs in Context. 2019;8:212567. doi:10.7573/dic.212567.

Yang H, Hao Y, Qi CZ, et al. Estimation of total costs in pediatric and young adult patients with relapsed or refractory acute lymphoblastic leukemia receiving tisagenlecleucel from a U.S. hospital's perspective. J Manag Care Spec Pharm. 2020;26(8):971-980. doi:10.18553/jmcp.2020.20052.

Грибкова И.В. CAR NK-клетки и возможность их использования для лечения гематологических новообразований. Современная Онкология. 2022;24(3):331–335 [Gribkova IV. CAR NK-сells for the treatment of hematological malignancies: A review. Journal of Modern Oncology. 2022;24(3):331–335 (In Russ.)]. doi:10.26442/18151434.2022.3.201699.

Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051-3057. doi:10.1182/blood-2004-07-2974.

Rubnitz JE, Inaba H, Ribeiro RC, et al. NKAML: A pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955-959. doi:10.1200/JCO.2009.24.4590.

Shaffer BC, Le Luduec JB, Forlenza C, et al. Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(4):705-709. doi:10.1016/j.bbmt.2015.12.028.

Acharya UH, Dhawale T, Yun S, et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev Hematol. 2019;12(3):195-205. doi:10.1080/17474086.2019.1585238.

Wang L, Dou M, Ma Q, et al. Chimeric antigen receptor (CAR)-modified NK cells against cancer: Opportunities and challenges. Int Immunopharmacol. 2019;74:105695. doi:10.1016/j.intimp.2019.105695.

Rotolo R, Leuci V, Donini C, et al. CAR-based strategies beyond T lymphocytes: integrative opportunities for cancer adoptive immunotherapy. Int J Mol Sci. 2019;20(11):2839. doi:10.3390/ijms20112839.

Klingemann H. Are natural killer cells superior CAR drivers? Oncoimmunology. 2014;3:e28147. doi:10.4161/onci.28147.

Hunter BD, Jacobson CA. CAR T-cell associated neurotoxicity: mechanisms, clinicopathologic correlates, and future directions. J Natl Cancer Inst. 2019;111(7):646-654. doi:10.1093/jnci/djz017.

Albinger N, Pfeifer R, Nitsche M, et al. Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia. Blood Cancer J. 2022;12(4). doi:10.1038/s41408-022-00660-2.

Jan CI, Huang SW, Canoll P, et al. Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. J Immunother Cancer. 2021;9(10):e003050. doi:10.1136/jitc-2021-003050.

Montagner IM, Penna A, Fracasso G, et al. Anti-PSMA CAR-engineered NK-92 Cells: An off-the-shelf cell therapy for prostate cancer. cells. 2020;9(6):1382. doi:10.3390/cells9061382.

Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545-553. doi:10.1056/NEJMoa1910607.

Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083-1089.

Xiao L, Cen D, Gan H, et al. Adoptive tansfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol Ther. 2019;27(6):1114-1125. doi:10.1016/j.ymthe.2019.03.011.

Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 2009;33(9):1255-1259. doi:10.1016/j.leukres.2008.11.024.

Hu Y, Tian Zh, Zhang C, Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacologica Sinica. 2018;39:167–176; doi:10.1038/aps.2017.125.

Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994;8(4):652-8.

Tonn T, Schwabe D, Klingemann HG, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013;15(12):1563-1570. doi:10.1016/j.jcyt.2013.06.017.

Arai S, Meagher R, Swearingen M, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy. 2008;10(6):625-632. doi:10.1080/14653240802301872.

Боробова Е.А., Жеравин А.А. Натуральные киллеры в иммунотерапии онкологических заболеваний. Сибирский онкологический журнал. 2018;17(6):97–104 [Borobova EA, Zheravin AA. Natural killer cells in immunotherapy for cancer. Siberian journal of oncology. 2018;17(6):97–104 (In Russ.)]. doi:10.21294/1814-4861-2018-17-6-97-104.

MacLeod RA, Nagel S, Kaufmann M, et al. Multicolor-FISH analysis of a natural killer cell line (NK-92). Leuk Res. 2002;26(11):1027-1033. doi:10.1016/s0145-2126(02)00055-3.

Tsirigotis P, Resnick IB, Kapsimalli V, et al. Irradiated mononuclear cells express significant in vitro cytotoxic activity: promise for in vivo clinical efficacy of irradiated mismatched donor lymphocytes infusion. Immunotherapy. 2014;6(4):409-17. doi:10.2217/imt.14.10.

Zhang C, Burger MC, Jennewein L, et al. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. 2015;108(5). doi:10.1093/jnci/djv375.

Pfefferle A, Huntington ND. You have got a fast CAR: chimeric antigen receptor NK cells in cancer therapy. Cancers. 2020;12(3):706. doi:10.3390/cancers12030706.

Musolino A, Naldi N, Bortesi B, et al. Immunoglobulin g fragment c receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with her-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26(11):1789–96. doi:10.1200/JCO.2007.14.8957.

Taylor RJ, Chan SL, Wood A, et al. FcγRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck. Cancer Immunol Immunother. 2009;58(7):997–1006. doi:10.1007/s00262-008-0613-3.

Schönfeld K, Sahm C, Zhang C, et al. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther. 2015;23(2):330-8. doi:10.1038/mt.2014.219.

Romanski A, Uherek C, Bug G, et al. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med. 2016;20(7):1287-94. doi:10.1111/jcmm.12810.

Luevano M, Daryouzeh M, Alnabhan R, et al. The unique profile of cord blood natural killer cells balances incomplete maturation and effective killing function upon activation. Hum Immunol. 2012;73(3):248-257. doi:10.1016/j.humimm.2011.12.015.

Herrera L, Santos S, Vesga MA, et al. Adult peripheral blood and umbilical cord blood NK cells are good sources for effective CAR therapy against CD19 positive leukemic cells. Sci Rep. 2019;9(1):18729. doi:10.1038/s41598-019-55239-y.

Björkström NK, Riese P, Heuts F, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. 2010;116(19):3853-3864. doi:10.1182/blood-2010-04-281675.

Vela M, Corral D, Carrasco P, et al. Haploidentical IL-15/41BBL activated and expanded natural killer cell infusion therapy after salvage chemotherapy in children with relapsed and refractory leukemia. Cancer Lett. 2018;422:107-117. doi:10.1016/j.canlet.2018.02.033.

Björklund AT, Carlsten M, Sohlberg E, et al. Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin Cancer Res. 2018;24(8):1834-1844. doi:10.1158/1078-0432.CCR-17-3196.

Curti A, Ruggeri L, Parisi S, et al. Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clin Cancer Res. 2016;22(8):1914-1921. doi:10.1158/1078-0432.CCR-15-1604.

Woll PS, Grzywacz B, Tian X, et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 2009; 113:6094–101. doi:10.1182/blood-2008-06-165225.

Knorr DA, Bock A, Brentjens RJ, et al. Engineered human embryonic stem cell-derived lymphocytes to study in vivo trafficking and immunotherapy. Stem Cells Dev. 2013;22:1861–9. doi:10.1089/scd.2012.0608.

Knorr DA, Ni Z, Hermanson D, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2013;2:274–83. doi:10.5966/sctm.2012-0084.

Freud AG, Yokohama A, Becknell B, et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med. 2006;203(4):1033-1043. doi:10.1084/jem.20052507.

Grzywacz B, Kataria N, Sikora M, et al. Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood. 2006;108(12):3824-3833. doi:10.1182/blood-2006-04-020198.

Li Y, Hermanson DL, Moriarity BS, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181-192.e5. doi:10.1016/j.stem.2018.06.002

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2023