Мутации в генах гомологичной рекомбинации ДНК при раке предстательной железы: предиктивная значимость и роль в наследственной предрасположенности
Загрузок: 0
Просмотров: 2
pdf

Ключевые слова

рак предстательной железы
репарация по механизму гомологичной рекомбинации
PARP-ингибиторы
наследственная предрасположенность
предиктивные факторы

Как цитировать

Иевлева, А. Г., Алексахина, С. Н., Соколенко, А. П., Отраднова, Е. А., Кулигина, Е. Ш., & Имянитов, Е. Н. (2025). Мутации в генах гомологичной рекомбинации ДНК при раке предстательной железы: предиктивная значимость и роль в наследственной предрасположенности. Вопросы онкологии, 71(6), OF–2326. https://doi.org/10.37469/0507-3758-2025-71-6-OF-2326

Аннотация

Внедрение технологии секвенирования нового поколения позволило охарактеризовать молекулярный портрет рака предстательной железы (РПЖ) и обнаружить высокую частоту нарушений в генах репарации ДНК, в том числе участниках гомологичной рекомбинации (Homologous Recombination Repair, HRR), при опухолях этой локализации. Анализ статуса генов HRR приобрел особую актуальность после внедрения в практику терапии метастатического кастрационно-резистентного РПЖ ингибиторов поли(АДФ-рибоза)-полимеразы (PARP-ингибиторов). Эти препараты одобрены к применению при наличии мутаций в генах BRCA1/2 и ряде других компонентов системы репарации ДНК. В то время как предиктивное значение повреждений BRCA1 и BRCA2 не вызывает сомнений, клиническая польза PARP-ингибиторов в присутствии других нарушений HRR является более спорной. Помимо персонализации терапии, генетический анализ HRR позволяет выявить наследственные формы РПЖ. Настоящий обзор посвящен характеристике и клинической значимости мутаций в различных генах HRR.

https://doi.org/10.37469/0507-3758-2025-71-6-OF-2326
Загрузок: 0
Просмотров: 2
pdf

Библиографические ссылки

Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3): 209-249.-DOI: https://doi.org/10.3322/caac.21660.

Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022; 252.- ISBN: 978-5-85502-280-3. [Ed. by Kaprin A.D., Starinsky V.V., Shakhzadova A.O. Malignant tumors in Russia in 2021 (morbidity and mortality). Moscow: P.A. Herzen Moscow Research Institute of Oncology - branch of FSBI «NMRC of Radiology» of the Ministry of Health of Russia. 2022; 252.- ISBN: 978-5-85502-280-3 (in Rus)].

Taylor A.K., Kosoff D., Emamekhoo H., et al. PARP inhibitors in metastatic prostate cancer. Front Oncol. 2023; 13: 1159557.-DOI: https://doi.org/10.3389/fonc.2023.1159557.

Abida W., Cheng M.L., Armenia J., et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 2019; 5(4): 471-478.-DOI: https://doi.org/10.1001/jamaoncol.2018.5801.

Finch A., Clark R., Vesprini D., et al. An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis Oncol. 2022; 6(1): 43.-DOI: https://doi.org/doi:10.1038/s41698-022-00282-8.

Davies H., Glodzik D., Morganella S., et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017; 23(4): 517-525.-DOI: https://doi.org/10.1038/nm.4292.

Polak P., Kim J., Braunstein L.Z., et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat Genet. 2017; 49(10): 1476-1486.-DOI: https://doi.org/10.1038/ng.3934.

Nguyen L., W.M. Martens J., Van Hoeck A., Cuppen E. Pan-cancer landscape of homologous recombination deficiency. Nat Commun. 2020; 11(1): 5584.-DOI: https://doi.org/10.1038/s41467-020-19406-4.

Lord C.J., Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017; 355(6330): 1152-1158.-DOI: https://doi.org/10.1126/science.aam7344.

Cancer genome atlas research network. The molecular taxonomy of primary prostate cancer. Cell. 2015; 163(4): 1011-25.-DOI: https://doi.org/10.1016/j.cell.2015.10.025.

Robinson D., Van Allen E.M., Wu Y.M., et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161(5): 1215-1228.-DOI: https://doi.org/10.1016/j.cell.2015.05.001.

Pritchard C.C., Mateo J., Walsh M.F., et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016; 375(5): 443-53.-DOI: https://doi.org/10.1056/NEJMoa1603144.

de Bono J., Mateo J., Fizazi K., et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020; 382(22): 2091-2102.-DOI: https://doi.org/10.1056/NEJMoa1911440.

Abida W., Campbell D., Patnaik A., et al. Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: Analysis from the phase II TRITON2 study. Clin Cancer Res. 2020; 26(11): 2487-2496.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-0394.

Longoria O., Beije N., de Bono J.S. PARP inhibitors for prostate cancer. Semin Oncol. 2024; 51(1-2): 25-35.-DOI: https://doi.org/10.1053/j.seminoncol.2023.09.003.

Pomerantz M.M., Spisák S., Jia L., et al. The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer. 2017; 123(18): 3532-3539.-DOI: https://doi.org/10.1002/cncr.30808.

Mota J.M., Barnett E., Nauseef J.T., et al. Platinum-based chemotherapy in metastatic prostate cancer with DNA repair gene alterations. JCO Precis Oncol. 2020; 4: 355-366.-DOI: https://doi.org/10.1200/po.19.00346.

Schmid S., Omlin A., Higano C., et al. Activity of platinum-based chemotherapy in patients with advanced prostate cancer with and without DNA repair gene aberrations. JAMA Netw Open. 2020; 3(10): e2021692.-DOI: https://doi.org/10.1001/jamanetworkopen.2020.21692.

Cheng H.H., Pritchard C.C., Boyd T., et al. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. Eur Urol. 2016; 69(6): 992-5.-DOI: https://doi.org/10.1016/j.eururo.2015.11.022.

Zafeiriou Z., Bianchini D., Chandler R., et al. Genomic analysis of three metastatic prostate cancer patients with exceptional responses to carboplatin indicating different types of DNA repair deficiency. Eur Urol. 2019; 75(1): 184-192.-DOI: https://doi.org/10.1016/j.eururo.2018.09.048.

Tuffaha H., Edmunds K., Fairbairn D., et al. Guidelines for genetic testing in prostate cancer: a scoping review. Prostate Cancer Prostatic Dis. 2024; 27(4): 594-603.-DOI: https://doi.org/10.1038/s41391-023-00676-0.

NCCN clinical practice guidelines in oncology (NCCN Guidelines) Prostate cancer. Version 4.2024.-URL: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf.

Kote-Jarai Z., Leongamornlert D., Saunders E., et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer. 2011; 105(8): 1230-4.-DOI: https://doi.org/10.1038/bjc.2011.383.

Oh M., Alkhushaym N., Fallatah S., et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: A meta-analysis. Prostate. 2019; 79(8): 880-895.-DOI: https://doi.org/10.1002/pros.23795.

Abida W., Cyrta J., Heller G., et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A. 2019; 116(23): 11428-11436.-DOI: https://doi.org/10.1073/pnas.1902651116.

Castro E., Goh C., Olmos D., et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013; 31(14): 1748-57.-DOI: https://doi.org/10.1200/JCO.2012.43.1882.

Quigley D.A., Dang H.X., Zhao S.G., et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018; 174(3): 758-769.e9.-DOI: https://doi.org/10.1016/j.cell.2018.06.039.

Mukhtar T.K., Wilcox N., Dennis J., et al. Protein-truncating and rare missense variants in ATM and CHEK2 and associations with cancer in UK Biobank whole-exome sequence data. J Med Genet. 2024; 61(11): 1016-1022.-DOI: https://doi.org/10.1136/jmg-2024-110127.

Karlsson Q., Brook M.N., Dadaev T., et al. Rare germline variants in ATM predispose to prostate cancer: A PRACTICAL consortium study. Eur Urol Oncol. 2021; 4(4): 570-579.-DOI: https://doi.org/10.1016/j.euo.2020.12.001.

Abida W., Campbell D., Patnaik A., et al. Rucaparib for the treatment of metastatic castration-resistant prostate cancer associated with a DNA damage repair gene alteration: Final results from the phase 2 TRITON2 study. Eur Urol. 2023; 84(3): 321-330.-DOI: https://doi.org/10.1016/j.eururo.2023.05.021.

Mateo J., Porta N., Bianchini D., et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020; 21(1): 162-174.-DOI: https://doi.org/10.1016/S1470-2045(19)30684-9.

de Bono J.S., Mehra N., Scagliotti G.V., et al. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial. Lancet Oncol. 2021; 22(9): 1250-1264.-DOI: https://doi.org/10.1016/S1470-2045(21)00376-4.

Wokołorczyk D., Kluźniak W., Huzarski T., et al. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer. 2020; 147(10): 2793-2800.-DOI: https://doi.org/10.1002/ijc.33272.

Cybulski C., Wokołorczyk D., Kluźniak W., et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer. 2013; 108(2): 461-8.-DOI: https://doi.org/10.1038/bjc.2012.486.

Nicolosi P., Ledet E., Yang S., et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019; 5(4): 523-528.-DOI: https://doi.org/10.1001/jamaoncol.2018.6760.

Wokołorczyk D., Kluźniak W., Stempa K., et al. PALB2 mutations and prostate cancer risk and survival. Br J Cancer. 2021; 125(4): 569-575.-DOI: https://doi.org/10.1038/s41416-021-01410-0.

Horak P., Weischenfeldt J., von Amsberg G., et al. Response to olaparib in a PALB2 germline mutated prostate cancer and genetic events associated with resistance. Cold Spring Harb Mol Case Stud. 2019; 5(2): a003657.-DOI: https://doi.org/10.1101/mcs.a003657.

Иевлева А.Г., Алексахина С.Н., Соколенко А.П., et al. Спектр мутаций в генах репарации ДНК по механизму гомологичной рекомбинации при раке предстательной железы у российских пациентов. Вопросы онкологии. 2025; 71 (1): 8-16.-DOI: https://doi.org/10.37469/0507-3758-2025-71-1-OF-2180. [Iyevleva A.G., Aleksakhina S.N., Sokolenko A.P., et al. Spectrum of mutations in DNA homologous recombination repair genes in Russian patients with prostate cancer. Voprosy Onkologii = Problems in Oncology. 2025; 71 (1): 8-16.-DOI: https://doi.org/10.37469/0507-3758-2025-71-1-OF-2180 (In Rus)].

Wu Y.M., Cieślik M., Lonigro R.J., et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 2018; 173(7): 1770-1782.e14.-DOI: https://doi.org/10.1016/j.cell.2018.04.034.

Antonarakis E.S., Isaacsson Velho P., Fu W., et al. CDK12-altered prostate cancer: Clinical features and therapeutic outcomes to standard systemic therapies, poly (ADP-ribose) polymerase inhibitors, and PD-1 inhibitors. JCO Precis Oncol. 2020; 4: 370-381.-DOI: https://doi.org/10.1200/po.19.00399.

Castro E., Goh C., Leongamornlert D., et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol. 2015; 68(2): 186-93.-DOI: https://doi.org/10.1016/j.eururo.2014.10.022.

Taylor R.A., Fraser M., Livingstone J., et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun. 2017; 8: 13671.-DOI: https://doi.org/10.1038/ncomms13671.

De Sarkar N., Dasgupta S., Chatterjee P., et al. Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer. JCI Insight. 2021; 6(23): e152789.-DOI: https://doi.org/10.1172/jci.insight.152789.

Decker B., Karyadi D.M., Davis B.W., et al. Biallelic BRCA2 mutations shape the somatic mutational landscape of aggressive prostate tumors. Am J Hum Genet. 2016; 98(5): 818-829.-DOI: https://doi.org/10.1016/j.ajhg.2016.03.003.

Barnett E.S., Schultz N., Stopsack K.H., et al. Analysis of BRCA2 copy number loss and genomic instability in circulating tumor cells from patients with metastatic castration-resistant prostate cancer. Eur Urol. 2023; 83(2): 112-120.-DOI: https://doi.org/10.1016/j.eururo.2022.08.010.

Markowski M.C., Antonarakis E.S. BRCA1 versus BRCA2 and PARP inhibitor sensitivity in prostate cancer: More different than alike? J Clin Oncol. 2020; 38(32): 3735-3739.-DOI: https://doi.org/10.1200/JCO.20.02246.

Taza F., Holler A.E., Fu W., et al. Differential activity of PARP inhibitors in BRCA1- versus BRCA2-altered metastatic castration-resistant prostate cancer. JCO Precis Oncol. 2021; 5: PO.21.00070.-DOI: https://doi.org/10.1200/PO.21.00070.

Triner D., Graf R.P., Madison R.W., et al. Durable benefit from poly(ADP-ribose) polymerase inhibitors in metastatic prostate cancer in routine practice: biomarker associations and implications for optimal clinical next-generation sequencing testing. ESMO Open. 2024; 9(9): 103684.-DOI: https://doi.org/10.1016/j.esmoop.2024.103684.

Rantapero T., Wahlfors T., Kähler A., et al. Inherited DNA repair gene mutations in men with lethal prostate cancer. Genes (Basel). 2020; 11(3): 314.-DOI: https://doi.org/10.3390/genes11030314.

Castro E., Romero-Laorden N., Del Pozo A., et al. PROREPAIR-B: A prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2019; 37(6): 490-503.-DOI: https://doi.org/10.1200/JCO.18.00358.

Stolarova L., Kleiblova P., Janatova M., et al. CHEK2 Germline variants in cancer predisposition: Stalemate rather than checkmate. Cells. 2020; 9(12): 2675.-DOI: https://doi.org/10.3390/cells9122675.

Lotan T.L., Kaur H.B., Salles D.C., et al. Homologous recombination deficiency (HRD) score in germline BRCA2- versus ATM-altered prostate cancer. Mod Pathol. 2021; 34(6): 1185-1193.-DOI: https://doi.org/10.1038/s41379-020-00731-4.

Mandelker D., Kumar R., Pei X., et al. The landscape of somatic genetic alterations in breast cancers from CHEK2 germline mutation carriers. JNCI Cancer Spectr. 2019; 3(2): pkz027.-DOI: https://doi.org/10.1093/jncics/pkz027.

Iyevleva A.G., Aleksakhina S.N., Sokolenko A.P., et al. Somatic loss of the remaining allele occurs approximately in half of CHEK2-driven breast cancers and is accompanied by a border-line increase of chromosomal instability. Breast Cancer Res Treat. 2022; 192(2): 283-291.-DOI: https://doi.org/10.1007/s10549-022-06517-3.

Golan T., O'Kane G.M., Denroche R.E., et al. Genomic features and classification of homologous recombination deficient pancreatic ductal adenocarcinoma. Gastroenterology. 2021; 160(6): 2119-2132.e9.-DOI: https://doi.org/10.1053/j.gastro.2021.01.220.

Tsujino T., Takai T., Hinohara K., et al. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun. 2023; 14(1): 252.-DOI: https://doi.org/10.1038/s41467-023-35880-y.

Chrzanowska K.H., Gregorek H., Dembowska-Bagińska B., et al. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012; 7: 13.-DOI: https://doi.org/10.1186/1750-1172-7-13.

Varon R., Seemanova E., Chrzanowska K., et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet. 2000; 8(11): 900-2.-DOI: https://doi.org/10.1038/sj.ejhg.5200554.

Seemanova E., Varon R., Vejvalka J., et al. The slavic NBN founder mutation: A role for reproductive fitness? PLoS One. 2016; 11(12): e0167984.-DOI: https://doi.org/10.1371/journal.pone.0167984.

Yanus G.A., Suspitsin E.N., Imyanitov E.N. The Spectrum of disease-associated alleles in countries with a predominantly slavic population. Int J Mol Sci. 2024; 25(17): 9335.-DOI: https://doi.org/10.3390/ijms25179335.

Rusak B., Kluźniak W., Wokołorczykv D., et al. Inherited NBN mutations and prostate cancer risk and survival. Cancer Res Treat. 2019; 51(3): 1180-1187.-DOI: https://doi.org/10.4143/crt.2018.532.

Yang X., Leslie G., Doroszuk A., et al. Cancer risks associated with germline PALB2 pathogenic variants: An international study of 524 families. J Clin Oncol. 2020; 38(7): 674-685.-DOI: https://doi.org/10.1200/JCO.19.01907.

Li A., Geyer F.C., Blecua P., et al. Homologous recombination DNA repair defects in PALB2-associated breast cancers. NPJ Breast Cancer. 2019; 5: 23.-DOI: https://doi.org/10.1038/s41523-019-0115-9. Erratum in: NPJ Breast Cancer. 2019; 5: 44.-DOI: https://doi.org/10.1038/s41523-019-0140-8.

Dillon K.M., Bekele R.T., Sztupinszki Z., et al. PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. NPJ Precis Oncol. 2022; 6(1): 49.-DOI: https://doi.org/10.1038/s41698-022-00291-7.

Nguyen B., Mota J.M., Nandakumar S., et al. Pan-cancer analysis of CDK12 alterations identifies a subset of prostate cancers with distinct genomic and clinical characteristics. Eur Urol. 2020; 78(5): 671-679.-DOI: https://doi.org/10.1016/j.eururo.2020.03.024.

Bajrami I., Frankum J.R., Konde A., et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res. 2014; 74(1): 287-97.-DOI: https://doi.org/10.1158/0008-5472.CAN-13-2541.

van Dessel L.F., van Riet J., Smits M., et al. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 2019; 10(1): 5251.-DOI: https://doi.org/10.1038/s41467-019-13084-7.

Fallah J., Xu J., Weinstock C., et al. Efficacy of poly(ADP-ribose) Polymerase inhibitors by individual genes in homologous recombination repair gene-mutated metastatic castration-resistant prostate cancer: A US Food and Drug Administration pooled analysis. J Clin Oncol. 2024; 42(14): 1687-1698.-DOI: https://doi.org/10.1200/JCO.23.02105.

Nguyen C.B., Reimers M.A., Perera C., et al. Evaluating immune checkpoint blockade in metastatic castration-resistant prostate cancers with deleterious CDK12 alterations in the phase 2 IMPACT trial. Clin Cancer Res. 2024; 30(15): 3200-3210.-DOI: https://doi.org/10.1158/1078-0432.ccr-24-0400.

Smith M.R., Scher H.I., Sandhu S,. et al. Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2022; 23(3): 362-373.-DOI: https://doi.org/10.1016/S1470-2045(21)00757-9.

Hussain M., Mateo J., Fizazi K., et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med. 2020; 383(24): 2345-2357.-DOI: https://doi.org/10.1056/NEJMoa2022485.

Wilkes D.C., Sailer V., Xue H., et al. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents. Cold Spring Harb Mol Case Stud. 2017; 3(5): a001487.-DOI: https://doi.org/10.1101/mcs.a001487.

Torres-Esquius S., Llop-Guevara A., Gutiérrez-Enríquez S., et al. Prevalence of homologous recombination deficiency among patients with germline RAD51C/D breast or ovarian cancer. JAMA Netw Open. 2024; 7(4): e247811.-DOI: https://doi.org/10.1001/jamanetworkopen.2024.7811.

Deng J., Altintas B., Haley J.S., et al. Most Fanconi anemia heterozygotes are not at increased cancer risk: A genome-first DiscovEHR cohort population study. Genet Med. 2024; 26(3): 101042.-DOI: https://doi.org/10.1016/j.gim.2023.101042.

Leongamornlert D., Saunders E., Dadaev T., et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer. 2014; 110(6): 1663-72.-DOI: https://doi.org/10.1038/bjc.2014.30.

Pelttari L.M., Nurminen R., Gylfe A., et al. Screening of Finnish RAD51C founder mutations in prostate and colorectal cancer patients. BMC Cancer. 2012; 12: 552.-DOI: https://doi.org/10.1186/1471-2407-12-552.

Stastna B., Dolezalova T., Matejkova K., et al. Germline pathogenic variants in the MRE11, RAD50, and NBN (MRN) genes in cancer predisposition: A systematic review and meta-analysis. Int J Cancer. 2024; 155(9): 1604-1615.-DOI: https://doi.org/10.1002/ijc.35066.

Stempa K., Wokołorczyk D., Kluźniak W., et al. Do BARD1 mutations confer an elevated risk of prostate cancer? Cancers (Basel). 2021; 13(21): 5464.-DOI: https://doi.org/10.3390/cancers13215464.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2025