Аннотация
Наследственные опухоли молочной железы и яичника относятся к наиболее распространенным разновидностям семейного рака. Полагают, что не менее 10 % случаев рака молочной железы (РМЖ) и около 20–30 % случаев рака яичника (РЯ) вызваны наследственными дефектами генома. Наиболее изученными высокопенетрантными генами, связанными с РМЖ и РЯ, являются BRCA1 и BRCA2 — ключевые компоненты системы репарации двунитевых разрывов ДНК. У некоторых пациенток возникновение РМЖ или РЯ можно объяснить мутациями в других генах, отвечающих за стабильность генома: PALB2, CHEK2, BLM, FANCM, RECQL, MRE11, RAD51C, RAD51D, ATM, NBN, CDH1, TP53 и др. Примечательно, что около половины случаев РМЖ и РЯ с признаками наследственной этиологии до сих пор не имеют генетического объяснения. Развитие неоплазм у гетерозиготных носителей патогенных мутаций, как правило, происходит по двухударному механизму (two-hit), то есть сопровождается соматической инактивацией «нормальной» копии гена. Альтернативным вариантом патогенеза является конститутивное подавление функции пораженного гена (гаплонедостаточность), на фоне которой злокачественная трансформация становится более вероятной. Изначально исследования семейных случаев РМЖ и РЯ были нацелены преимущественно на раннюю диагностику и профилактику возникновения неоплазм. К настоящему времени накоплено множество данных о том, что наследственные раки зачастую имеют молекулярные мишени для таргетного терапевтического воздействия. Так, присутствие наследственных дефектов BRCA1/2 ассоциировано с чувствительностью опухолей к ингибиторам PARP и ДНК-повреждающим платиносодержащим препаратам. В данном обзоре представлены современные сведения о генетических механизмах предрасположенности к РМЖ и РЯ, а также изложены основные подходы к диагностике и лечению данной категории заболеваний.
Библиографические ссылки
Imyanitov E.N., Kuligina E.S., Sokolenko A.P., et al. Hereditary cancer syndromes. World J Clin Oncol. 2023; 14(2): 40-68.-DOI: 10.5306/wjco.v14.i2.40.
Suspitsin E.N., Imyanitov E.N. Hereditary conditions associated with elevated cancer risk in childhood. Biochemistry (Mosc). 2023; 88(7): 880-891.-DOI: 10.1134/S0006297923070039.
Sharma R., Lewis S., Wlodarski M.W. DNA Repair syndromes and cancer: insights into genetics and phenotype patterns. Front Pediatr. 2020; 8: 570084.-DOI: 10.3389/fped.2020.570084.
Adam M.P., Feldman J., Mirzaa G.M., et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle. 1993-2024.-URL: https://www.ncbi.nlm.nih.gov/books/NBK1116/.
Breast Cancer Association Consortium; Dorling L., Carvalho S., et al. Breast cancer risk genes - association analysis in more than 113,000 women. N Engl J Med. 2021; 384: 428-439.-DOI: 10.1056/NEJMoa1913948.
Hu C., Hart S.N., Gnanaolivu R., et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med. 2021;384(5):440-451.-DOI: 10.1056/NEJMoa2005936.
Sokolenko A.P., Sokolova T.N., Ni V.I., et al. Frequency and spectrum of founder and non-founder BRCA1 and BRCA2 mutations in a large series of Russian breast cancer and ovarian cancer patients. Breast Cancer Res Treat. 2020; 184(1): 229-235.-DOI: 10.1007/s10549-020-05827-8.
Mersch J., Jackson M.A., Park M., et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015; 121(2): 269-75.-DOI: 10.1002/cncr.29041.
Knudson A.G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971; 68(4): 820-3.-DOI: 10.1073/pnas.68.4.820.
Maxwell K.N., Wubbenhorst B., Wenz B.M., et al. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun. 2017; 8(1): 319.-DOI: 10.1038/s41467-017-00388-9.
Preobrazhenskaya E.V., Shleykina A.U., Gorustovich O.A., et al. Frequency and molecular characteristics of PALB2-associated cancers in Russian patients. Int J Cancer. 2021; 148(1): 203-210.-DOI: 10.1002/ijc.33317.
Iyevleva A.G., Aleksakhina S.N., Sokolenko A.P., et al. Somatic loss of the remaining allele occurs approximately in half of CHEK2-driven breast cancers and is accompanied by a border-line increase of chromosomal instability. Breast Cancer Res Treat. 2022; 192(2): 283-291.-DOI: 10.1007/s10549-022-06517-3.
Peri S., Caretti E., Tricarico R., et al. Haploinsufficiency in tumor predisposition syndromes: altered genomic transcription in morphologically normal cells heterozygous for VHL or TSC mutation. Oncotarget. 2017; 8(11): 17628-17642.-DOI: 10.18632/oncotarget.12192.
McDonnell J.E., Gild M.L., Clifton-Bligh R.J., et al. Multiple endocrine neoplasia: an update. Intern Med J. 2019; 49: 954-961.-DOI: 10.1111/imj.14394.
Kuligina E.S., Sokolenko A.P., Bizin I.V., et al. Exome sequencing study of Russian breast cancer patients suggests a predisposing role for USP39. Breast Cancer Res Treat. 2020; 179(3): 731-742.-DOI: 10.1007/s10549-019-05492-6.
Poulsen L.M., Bisgaard M.L. MUTYH Associated Polyposis (MAP). Current Genomics. 2008; 9: 420-435.-DOI: 10.2174/138920208785699562.
Magrin L., Fanale D., Brando C., et al. POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes. Oncogene. 2021; 40(40): 5893-5901.-DOI: 10.1038/s41388-021-01984-2.
Brown G.R., Simon M., Wentling C., et al. A review of inherited cancer susceptibility syndromes. JAAPA. 2020; 33(12): 10-16.-DOI: 10.1097/01.JAA.0000721648.46099.2c.
Whitworth J., Smith P.S., Martin J.E., et al. Comprehensive cancer-predisposition gene testing in an adult multiple primary tumor series shows a broad range of deleterious variants and atypical tumor phenotypes. Am J Hum Genet. 2018; 103(1): 3-18.-DOI: 10.1016/j.ajhg.2018.04.013.
Breast Cancer Association Consortium; Mavaddat N., Dorling L., et al. Pathology of tumors associated with pathogenic germline variants in 9 breast cancer susceptibility genes. JAMA Oncol. 2022; 8(3): e216744.-DOI: 10.1001/jamaoncol.2021.6744.
Fierheller C.T., Alenezi W.M., Tonin P.N. The genetic analyses of french canadians of quebec facilitate the characterization of new cancer predisposing genes implicated in hereditary breast and/or ovarian cancer syndrome families. Cancers (Basel). 2021; 13: 3406.-DOI: 10.3390/cancers13143406.
Lheureux S., Go-URLey C., Vergote I., Oza A.M. Epithelial ovarian cancer. Lancet. 2019; 393: 1240-1253.-DOI: 10.1016/S0140-6736(18)32552-2.
Loibl S., Poortmans P., Morrow M., et al. Breast cancer. Lancet. 2021; 397(10286): 1750-1769.-DOI: 10.1016/S0140-6736(20)32381-3.
Kuchenbaecker K.B., Hopper J.L., Barnes D.R., et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017; 317(23): 2402-2416.-DOI: 10.1001/jama.2017.7112.
Rebbeck T.R., Mitra N., Wan F., et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015; 313(13): 1347-61.-DOI: 10.1001/jama.2014.5985.
Milne R.L., Antoniou A.C. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr Relat Cancer. 2016; 23: 69-84.-DOI: 10.1530/ERC-16-0277.
Pietragalla A., Arcieri M., Marchetti C., et al. Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int J Gynecol Cancer. 2020; 30(11): 1803-1810.-DOI: 10.1136/ijgc-2020-001556.
Colas C., Golmard L., de Pauw A., et al. "Decoding hereditary breast cancer" benefits and questions from multigene panel testing. Breast. 2019; 45: 29-35.-DOI: 10.1016/j.breast.2019.01.002.
Yang X., Song H., Leslie G., et al. Ovarian and breast cancer risks associated with pathogenic variants in RAD51C and RAD51D. J Natl Cancer Inst. 2020; 112(12): 1242-1250.-DOI: 10.1093/jnci/djaa030.
Antoniou A.C., Foulkes W.D., Tischkowitz M. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014; 371(17): 1651-2.-DOI: 10.1056/NEJMc1410673.
Dong L., Zhang H., Zhang H., et al. The mutation landscape of multiple cancer predisposition genes in Chinese familial/hereditary breast cancer families. Cancer Biol Med. 2021; 19(6): 850-70.-DOI: 10.20892/j.issn.2095-3941.2021.0011.
Neidhardt G., Hauke J., Ramser J., et al. Association between loss-of-function mutations within the FANCM gene and early-onset familial breast cancer. JAMA Oncol. 2017; 3(9): 1245-1248.-DOI: 10.1001/jamaoncol.2016.5592.
Felicio P.S., Grasel R.S., Campacci N., et al. Whole-exome sequencing of non-BRCA1/BRCA2 mutation carrier cases at high-risk for hereditary breast/ovarian cancer. Hum Mutat. 2021; 42(3): 290-299.-DOI: 10.1002/humu.24158.
Koivuluoma S., Tervasmäki A., Kauppila S., et al. Exome sequencing identifies a recurrent variant in SERPINA3 associating with hereditary susceptibility to breast cancer. Eur J Cancer. 2021; 143: 46-51.-DOI: 10.1016/j.ejca.2020.10.033.
Shin S.J., Dodd-Eaton E.B., Peng G., et al. Penetrance of different cancer types in families with li-fraumeni syndrome: a validation study using multicenter cohorts. Cancer Res. 2020; 80: 354-360.-DOI: 10.1158/0008-5472.CAN-19-0728.
Rana H.Q., Gelman R., LaDuca H., et al. Differences in TP53 mutation carrier phenotypes emerge from panel-based testing. J Natl Cancer Inst. 2018; 110: 863-870.-DOI: 10.1093/jnci/djy001.
Kratz C.P., Freycon C., Maxwell K.N., et al. Analysis of the li-fraumeni spectrum based on an international germline TP53 variant data set: an international agency for research on cancer TP53 database analysis. JAMA Oncol. 2021; 7: 1800-1805.-DOI: 10.1001/jamaoncol.2021.4398.
Corso G., Montagna G., Figueiredo J., et al. Hereditary gastric and breast cancer syndromes related to CDH1 germline mutation: a multidisciplinary clinical review. Cancers (Basel). 2020; 12: 1598.-DOI: 10.3390/cancers12061598.
Bucksch K., Zachariae S., Aretz S., et al. Cancer risks in Lynch syndrome, Lynch-like syndrome, and familial colorectal cancer type X: a prospective cohort study. BMC Cancer. 2020; 20(1): 460.-DOI: 10.1186/s12885-020-06926-x.
Zhu Q., Zhang J., Chen Y., et al. Whole-exome sequencing of ovarian cancer families uncovers putative predisposition genes. Int J Cancer. 2020; 146: 2147-2155.-DOI: 10.1002/ijc.32545.
Stradella A., Del Valle J., Rofes P., et al. ERCC3, a new ovarian cancer susceptibility gene? Eur J Cancer. 2020; 141: 1-8.-DOI: 10.1016/j.ejca.2020.09.023.
Roberts E., Howell S., Evans D.G. Polygenic risk scores and breast cancer risk prediction. Breast. 2023; 67: 71-77.-DOI: 10.1016/j.breast.2023.01.003.
Соколенко А.П., Бройде Р.В., Ни В.И., et al. Поиск новых генов наследственного рака яичника посредством полноэкзомного анализа пациенток, продемонстрировавших выраженный ответ на платиносодержащую терапию. Вопросы онкологии. 2023; 69(4): 676-683.-DOI: 10.37469/0507-3758-2023-69-4-676-683.
[Sokolenko A.P., Broyde R.V., Ni V.I., et al. Search for novel hereditary ovarian cancer susceptibility genes through whole-exome sequencing of responders to platinum-based therapy. Voprosy Onkologii = Problems in Oncology. 2023; 69(4): 676-683.-DOI: 10.37469/0507-3758-2023-69-4-676-683 (In Rus)].
Имянитов Е.Н., Филипенко М.Л., Кекеева Т.В., Демидова И.А. Практические аспекты тестирования наследственных мутаций в генах BRCA1/2: позиция Межрегиональной организации молекулярных генетиков в онкологии и онкогематологии. Вопросы онкологии. 2022; 68: 260-266.-DOI: 10.37469/0507-3758-2022-68-3-260-266. [Imyanitov E.N., Filipenko M.L., Kekeyeva T.V., Demidova I.A. Practical aspects of BRCA1/2 testing: position of the Russian society of molecular geneticists in oncology and oncohematology. Voprosy Onkologii = Problems in Oncology. 2022; 68: 260-266.-DOI: 10.37469/0507-3758-2022-68-3-260-266 (In Rus)].
Sokolenko A.P., Bakaeva E.K., Venina A.R., et al. Ethnicity-specific BRCA1, BRCA2, PALB2, and ATM pathogenic alleles in breast and ovarian cancer patients from the North Caucasus. Breast Cancer Res Treat. 2024; 203(2): 307-315.-DOI: 10.1007/s10549-023-07135-3.
Samadder N.J., Baffy N., Giridhar K.V., et al. Hereditary cancer syndromes-a primer on diagnosis and management, part 2: gastrointestinal cancer syndromes. Mayo Clin Proc. 2019; 94: 1099-1116. 10.1016/j.mayocp.2019.01.042.
Pouptsis A., Swafe L., Patwardhan M., Stavraka C. Surgical and Systemic Treatment of Hereditary Breast Cancer: A Mini-Review With a Focus on BRCA1 and BRCA2 Mutations. Front Oncol. 2020;10:553080.-DOI: https://doi.org/10.3389/fonc.2020.553080.
Møller P., Stormorken A., Jonsrud C., et al. Survival of patients with BRCA1-associated breast cancer diagnosed in an MRI-based surveillance program. Breast Cancer Res Treat. 2013; 139: 155-161.-DOI: 10.1007/s10549-013-2540-z.
Jacobson M., Coakley N., Bernardini M., et al. Risk reduction strategies for BRCA1/2 hereditary ovarian cancer syndromes: a clinical practice guideline. Hered Cancer Clin Pract. 2021; 19: 39.-DOI: 10.1186/s13053-021-00196-9.
Eleje G.U., Eke A.C., Ezebialu I.U., et al. Risk-reducing bilateral salpingo-oophorectomy in women with BRCA1 or BRCA2 mutations. Cochrane Database Syst Rev. 2018; 8: CD012464.-DOI: 10.1002/14651858.CD012464.pub2.
Heemskerk-Gerritsen B.A.M., Jager A., Koppert L.B., et al. Survival after bilateral risk-reducing mastectomy in healthy BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat. 2019; 177: 723-733.-DOI: 10.1007/s10549-019-05345-2.
Iyevleva A.G., Imyanitov E.N. Cytotoxic and targeted therapy for hereditary cancers. Hered Cancer Clin Pract. 2016; 14: 17.-DOI: 10.1186/s13053-016-0057-2.
Imyanitov E.N. Cytotoxic and targeted therapy for BRCA1/2-driven cancers. Hered Cancer Clin Pract. 2021; 19: 36.-DOI: 10.1186/s13053-021-00193-y.
Gorodnova T.V., Sokolenko A.P., Kondratiev S.V., et al. Mitomycin C plus cisplatin for systemic treatment of recurrent BRCA1-associated ovarian cancer. Invest New Drugs. 2020; 38: 1872-1878.-DOI: 10.1007/s10637-020-00965-8.
Chan C.Y., Tan K.V., Cornelissen B. PARP Inhibitors in Cancer Diagnosis and Therapy. Clin Cancer Res. 2021; 27: 1585-1594.-DOI: 10.1158/1078-0432.CCR-20-2766.
Le Page C., Amuzu S., Rahimi K., et al. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2 mutation carriers. Semin Cancer Biol. 2021; 77: 110-126.-DOI: 10.1016/j.semcancer.2020.08.005.
Stopsack K.H. Efficacy of PARP Inhibition in metastatic castration-resistant prostate cancer is very different with non-BRCA DNA repair alterations: reconstructing prespecified endpoints for cohort b from the phase 3 PROfound trial of olaparib. Eur Urol. 2021; 79: 442-445.-DOI: 10.1016/j.eururo.2020.09.024.
Byrum A.K., Vindigni A., Mosammaparast N. Defining and Modulating 'BRCAness'. Trends Cell Biol. 2019; 29(9): 740-751.-DOI: 10.1016/j.tcb.2019.06.005.
Kuligina E.Sh., Sokolenko A.P., Mitiushkina N.V., et al. Value of bilateral breast cancer for identification of rare recessive at-risk alleles: evidence for the role of homozygous GEN1 c.2515_2519delAAGTT mutation. Fam Cancer. 2013; 12: 129-132.-DOI: 10.1007/s10689-012-9575-x.
Yadav S., LaDuca H., Polley E.C., et al. Racial and ethnic differences in multigene hereditary cancer panel test results for women with breast cancer. J Natl Cancer Inst. 2021; 113: 1429-1433.-DOI: https://doi.org/10.1093/jnci/djaa167.

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
© АННМО «Вопросы онкологии», Copyright (c) 2025