Abstract
Aim - to define the role of preoperative screening in biliary cancer (BC) patients. Surgery is a radical treatment for BC, and it is usually performed patients with localized BC. Standard radiation diagnostic methods, primarily CT and MRI, allow to evaluate the primary tumor, vascular invasion, and to detect regional and distant metastases. MRI is more appropriate for the evaluation of intrahepatic spread; the accuracy in the diagnosis of true multiple liver lesions in intrahepatic cholangiocarcinoma reaches 100 %. MRI is useful to determine the degree of bile ducts involvement. CT is more preferable for the diagnosis of extrahepatic metastases. It has a higher specificity (80.7 % vs. 72.9 %, p = 0.01) in the detection of lymph node metastases with similar sensitivity to MRI. CT also allows more accurate assessment of vascular invasion and the involvement of adjacent tissues with a sensitivity of up to 90 %. Even when CT and MRI are used together in BC patients, still 25-30 % of patients cannot be diagnosed as unresectable before laparotomy. If metastases are suspected, it is advisable to use PET/CT. The sensitivity of PET/CT in detecting metastases ranges from 30 to 88 %; however, the method has a high specificity, above 90 %. There are supporters of a wider use of diagnostic laparoscopy in gallbladder cancer, as well as in extrahepatic BC, attributing their position to the high, up to 27 %, rate of implantation metastases. However, not everyone shares this opinion, noting a low, at the rate of a few percent, frequency of detection of peritoneal tumor deposits in BC and increasing possibilities of non-invasive diagnostic methods.
Conclusion. Planning surgery for BC patients, MRI or CT should be used as the main diagnostic method. To address specific diagnostic tasks, a range of methods can be extended. PET/CT or diagnostic laparoscopy should be done if the routine examination gives ambiguous results.
References
Gerber T.S., Müller L., Bartsch F., et al. Integrative analysis of intrahepatic cholangiocarcinoma subtypes for improved patient stratification: clinical, pathological, and radiological considerations. Cancers (Basel). 2022; 14(13): 3156.-DOI: https://doi.org/10.3390/cancers14133156.
Nagino M., Hirano S., Yoshitomi H., et al. Clinical practice guidelines for the management of biliary tract cancers 2019: The 3rd English edition. J Hepatobiliary Pancreat Sci. 2021; 28(1): 26-54.-DOI: https://doi.org/10.1002/jhbp.870.
Feo C.F., Ginesu G.C., Fancellu A., et al. Current management of incidental gallbladder cancer: A review. Int J Surg. 2022; 98: 106234.-DOI: https://doi.org/10.1016/j.ijsu.2022.106234.
Miura F., Sano K., Amano H., et al. Is it possible to define early distal cholangiocarcinoma? Langenbecks Arch Surg. 2016; 401(1): 25-32.-DOI: https://doi.org/10.1007/s00423-015-1351-6.
Lu J., Li B., Li F.Y., et al. Long-term outcome and prognostic factors of intrahepatic cholangiocarcinoma involving the hepatic hilus versus hilar cholangiocarcinoma after curative-intent resection: Should they be recognized as perihilar cholangiocarcinoma or differentiated? Eur J Surg Oncol. 2019; 45(11): 2173-2179.-DOI: https://doi.org/10.1016/j.ejso.2019.06.014.
Baheti A.D., Tirumani S.H., Shinagare A.B., et al. Correlation of CT patterns of primary intrahepatic cholangiocarcinoma at the time of presentation with the metastatic spread and clinical outcomes: retrospective study of 92 patients. Abdom Imaging. 2014; 39(6): 1193-201.-DOI: https://doi.org/10.1007/s00261-014-0167-0.
Fukami Y., Ebata T., Yokoyama Y., et al. Diagnostic ability of MDCT to assess right hepatic artery invasion by perihilar cholangiocarcinoma with left-sided predominance. J Hepatobiliary Pancreat Sci. 2012; 19(2): 179-86.-DOI: https://doi.org/10.1007/s00534-011-0413-6.
Sugiura T., Nishio H., Nagino M., et al. Value of multidetector-row computed tomography in diagnosis of portal vein invasion by perihilar cholangiocarcinoma. World J Surg. 2008; 32(7): 1478-84.-DOI: https://doi.org/10.1007/s00268-008-9547-3.
Nagino M. Fifty-year history of biliary surgery. Ann Gastroenterol Surg. 2019; 3(6): 598-605.-DOI: https://doi.org/10.1002/ags3.12289.
Ruys A.T., van Beem B.E., Engelbrecht M.R., et al. Radiological staging in patients with hilar cholangiocarcinoma: a systematic review and meta-analysis. Br J Radiol. 2012; 85(1017): 1255-62.-DOI: https://doi.org/10.1259/bjr/88405305.
Sugiura T., Uesaka K., Okamura Y., et al. Major hepatectomy with combined vascular resection for perihilar cholangiocarcinoma. BJS Open. 2021; 5(4): zrab064.-DOI: https://doi.org/10.1093/bjsopen/zrab064.
Valls C., Ruiz S., Martinez L., et al. Radiological diagnosis and staging of hilar cholangiocarcinoma. World J Gastrointest Oncol. 2013; 5(7): 115-26.-DOI: https://doi.org/10.4251/wjgo.v5.i7.115.
Mansour J.C., Aloia T.A., Crane C.H., et al. Hilar cholangiocarcinoma: expert consensus statement. HPB (Oxford). 2015; 17(8): 691-9.-DOI: https://doi.org/10.1111/hpb.12450.
Kim Y.Y., Yeom S.K., Shin H., et al. Clinical staging of mass-forming intrahepatic cholangiocarcinoma: computed tomography versus magnetic resonance imaging. Hepatol Commun. 2021; 5(12): 2009-2018.-DOI: https://doi.org/10.1002/hep4.1774.
Ihaveri K.S., Hosseini-Nik H. MRI of cholangiocarcinoma. J Magn Reson Imaging. 2015; 42(5): 1165-79.-DOI: https://doi.org/10.1002/jmri.24810.
Sutton T.L., Billingsley K.G., Walker B.S., et al. Detection of tumor multifocality in resectable intrahepatic cholangiocarcinoma: Defining the optimal pre-operative imaging modality. J Gastrointest Surg. 2021; 25(9): 2250-2257.-DOI: https://doi.org/10.1007/s11605-021-04911-8.
Шориков М.А., Сергеева О.Н., Кашкадаева А.В., и др. Функциональная оценка печени у пациентов с заболеваниями желчных протоков с помощью гадоксетовой кислоты по сравнению с «золотым стандартом» – гепатобилисцинтиграфией. Вестник рентгенологии и радиологии. 2019; 100(4): 200-208.-DOI: https://doi.org/10.20862/0042-4676-2019-100-4-200-208. [Shorikov M.A., Sergeeva O.N., Kashkadaeva A.V., et al. Liver functional evaluation using gadoxetic acid versus the gold standard hepatobiliary scintigraphy in patients with bile duct diseases. Journal of Radiology and Nuclear Medicine. 2019; 100(4): 200-208.-DOI: https://doi.org/10.20862/0042-4676-2019-100-4-200-208. (In Rus)].
Zhou Q., Dong G., Zhu Q., et al. Modification and comparison of CT criteria in the preoperative assessment of hepatic arterial invasion by hilar cholangiocarcinoma. Abdom Radiol (NY). 2021; 46(5): 1922-1930.-DOI: https://doi.org/10.1007/s00261-020-02849-0.
Yoh T., Cauchy F., Le Roy B., et al. Prognostic value of lymphadenectomy for long-term outcomes in node-negative intrahepatic cholangiocarcinoma: A multicenter study. Surgery. 2019; 166(6): 975-982.-DOI: https://doi.org/10.1016/j.surg.2019.06.025.
Suarez-Munoz M.A., Fernandez-Aguilar J.L., Sanchez-Perez B., et al. World J Gastrointest Oncol. 2013; 5(7): 132.-DOI: https://doi.org/10.4251/wjgo.v5.i7.132.
Ruys A.T., Kate F.J., Busch O.R., et al. Metastatic lymph nodes in hilar cholangiocarcinoma: does size matter? HPB. 2011; 13(12): 881-6.-DOI: https://doi.org/10.1111/j.1477-2574.2011.00389.x.
Ma K.W., Cheung T.T., She W.H., et al. Diagnostic and prognostic role of 18-FDG PET/CT in the management of resectable biliary tract cancer. World J Surg. 2018; 42(3): 823-834.-DOI: https://doi.org/10.1007/s00268-017-4192-3.
Lee E.J., Chang S.H., Lee T.Y., et al. Prognostic value of FDG-PET/CT total lesion glycolysis for patients with resectable distal bile duct adenocarcinoma. Anticancer Res. 2015; 35(12): 6985-91.
Huang X., Yang J., Li J., Xiong Y. Comparison of magnetic resonance imaging and 18-fludeoxyglucose positron emission tomography/computed tomography in the diagnostic accuracy of staging in patients with cholangiocarcinoma: A meta-analysis. Medicine (Baltimore). 2020; 99(35): e20932.-DOI: https://doi.org/10.1097/MD.0000000000020932.
Adachi T., Eguchi S., Beppu T., et al. Prognostic impact of preoperative lymph node enlargement in intrahepatic cholangiocarcinoma: A multi-institutional study by the kyushu study group of liver surgery. Ann Surg Oncol. 2015; 22(7): 2269-78.-DOI: https://doi.org/10.1245/s10434-014-4239-8.
Lin Y., Chong H., Song G., et al. The influence of 18F-fluorodeoxyglucose positron emission tomography/computed tomography on the N- and M-staging and subsequent clinical management of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2022; 11(5): 684-695.-DOI: https://doi.org/10.21037/hbsn-21-25.
Kim J.Y., Kim M.H., Lee T.Y., et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008; 103(5): 1145-51.-DOI: https://doi.org/10.1111/j.1572-0241.2007.01710.x.
Lamarca A., Barriuso J., Chander A., et al. 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) for patients with biliary tract cancer: Systematic review and meta-analysis. J Hepatol. 2019; 71(1): 115-129.-DOI: https://doi.org/10.1016/j.jhep.2019.01.038.
Долгушин М.Б., Михайлов А.И., Гордеев С.С. Роль ПЭТ/КТ с 18F-фтордезоксиглюкозой в выявлении прогрессирования колоректального рака у асимптоматических пациентов с повышенным уровнем раково-эмбрионального антигена (обзор литературы). Тазовая хирургия и онкология. 2019; 9(2): 11-15.-DOI: https://doi.org/10.17650/2220-3478-2019-9-2-11-15. [Dolgushin M.B., Mikhaylov A.I., Gordeev S.S. The role of PET/CT with 18F-fluorodeoxyglucose in detecting the progression of colorectal cancer in asymptomatic patients with elevated level of сarcinoembryonic antigen (literature review). Pelvic Surgery and Oncology. 2019; 9(2): 11-15.-DOI: https://doi.org/10.17650/2220-3478-2019-9-2-11-15. (In Rus)].
Pang L., Bo X., Wang J., et al. Role of dual-time point 18F-FDG PET/CT imaging in the primary diagnosis and staging of hilar cholangiocarcinoma. Abdom Radiol (NY). 2021; 46(9): 4138-4147.-DOI: https://doi.org/10.1007/s00261-021-03071-2.
Pang L., Mao W., Zhang Y., et al. Comparison of 18F-FDG PET/MR and PET/CT for pretreatment TNM staging of hilar cholangiocarcinoma. Abdom Radiol (NY). 2023.-DOI: https://doi.org/10.1007/s00261-023-03925-x.
Pabst K.M., Trajkovic-Arsic M., Cheung P.F.Y., at el. Superior tumor detection for 68Ga-FAPI-46 versus 18F-FDG PET/CT and conventional CT in patients with cholangiocarcinoma. J Nucl Med. 2023; 64(7): 1049-1055.-DOI: https://doi.org/10.2967/jnumed.122.265215.
Vogel A., Bridgewater J., Edeline J., et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023; 34(2): 127-40.-DOI: https://doi.org/10.1016/j.annonc.2022.10.506.
European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; European Alvaro Alvaro D., Gores G.J., Walicki J., et al. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. J Hepatol. 2023; 79(1): 181-208.-DOI: https://doi.org/10.1016/j.jhep.2023.03.010.
Rhee H., Choi S.H., Park J.H., et al. Preoperative magnetic resonance imaging-based prognostic model for mass-forming intrahepatic cholangiocarcinoma. Liver Int. 2022; 42(4): 930-941.-DOI: https://doi.org/10.1111/liv.15196.
van Vugt J.L.A., Gaspersz M.P., Coelen R.J.S., et al. The prognostic value of portal vein and hepatic artery involvement in patients with perihilar cholangiocarcinoma. HPB (Oxford). 2018; 20(1): 83-92.-DOI: https://doi.org/10.1016/j.hpb.2017.08.025.
Chen Q., Zheng Y., Zhao H., et al. The combination of preoperative D-dimer and CA19-9 predicts lymph node metastasis and survival in intrahepatic cholangiocarcinoma patients after curative resection. Ann Transl Med. 2020; 8(5): 192.-DOI: https://doi.org/10.21037/atm.2020.01.72.
Nakayama T., Tsuchikawa T., Shichinohe T., et al. Pathological confirmation of para-aortic lymph node status as a potential criterion for the selection of intrahepatic cholangiocarcinoma patients for radical resection with regional lymph node dissection. World J Surg. 2014; 38(7): 1763-8.-DOI: https://doi.org/10.1007/s00268-013-2433-7.
Nitta N., Ohgi K., Sugiura T., et al. Prognostic impact of paraaortic lymph node metastasis in extrahepatic cholangiocarcinoma. World J Surg. 2021; 45(2): 581-589.-DOI: https://doi.org/10.1007/s00268-020-05834-2.
Wiggers J.K., Groot Koerkamp B., van Klaveren D., et al. Preoperative risk score to predict occult metastatic or locally advanced disease in patients with resectable perihilar cholangiocarcinoma on imaging. J Am Coll Surg. 2018; 227(2): 238-246.e2.-DOI: https://doi.org/10.1016/j.jamcollsurg.2018.03.041.
Bird N., Elmasry M., Jones R., et al. Role of staging laparoscopy in the stratification of patients with perihilar cholangiocarcinoma. Br J Surg. 2017; 104(4): 418-425.-DOI: https://doi.org/10.1002/bjs.10399.
Coelen R.J., Ruys A.T., Besselink M.G., et al. Diagnostic accuracy of staging laparoscopy for detecting metastasized or locally advanced perihilar cholangiocarcinoma: a systematic review and meta-analysis. Surg Endosc. 2016; 30(10): 4163-73.-DOI: https://doi.org/10.1007/s00464-016-4788-y.
Kato A., Shimizu H., Ohtsuka M., et al. Surgical resection after downsizing chemotherapy for initially unresectable locally advanced biliary tract cancer: a retrospective single-center study. Ann Surg Oncol. 2013; 20(1): 318-24.-DOI: https://doi.org/10.1245/s10434-012-2312-8.
Li J., Xiong Y., Yang G., et al. Complete laparoscopic radical resection of hilar cholangiocarcinoma: technical aspects and long-term results from a single center. Wideochir Inne Tech Maloinwazyjne. 2021; 16(1): 62-75.-DOI: https://doi.org/10.5114/wiitm.2020.97363.
Davidson J.T. 4th, Jin L.X., Krasnick B., et al. Staging laparoscopy among three subtypes of extra-hepatic biliary malignancy: a 15-year experience from 10 institutions. J Surg Oncol. 2019; 119(3): 288-294.-DOI: https://doi.org/10.1002/jso.25323.
Alvaro D., Hassan C., Cardinale V., et al. Italian clinical practice guidelines on cholangiocarcinoma – Part II: treatment. Dig Liver Dis. 2020; 52: 1430-1442.-DOI: https://doi.org/10.1016/j.dld.2020.08.030.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2024