Molecular Mechanisms of the EGFR Inhibitor-induced Skin Toxicity
##article.numberofdownloads## 33
##article.numberofviews## 134
pdf (Русский)

Keywords

epidermal growth factor receptor (EGFR)
acneiform eruptions
molecular targeted therapy
skin toxicity

How to Cite

Desyatov, M. O., Sergeeva, I. G., Sidorov, S. V., Boyarskikh, U. A., Fedyanin, M. Y., & Filipenko, M. L. (2025). Molecular Mechanisms of the EGFR Inhibitor-induced Skin Toxicity. Voprosy Onkologii, 71(1), OF–2053. https://doi.org/10.37469/0507-3758-2025-71-1-OF-2053

Abstract

In recent years, the use of epidermal growth factor receptor (EGFR) inhibitors in cancer treatment has become common practice. However, despite its high efficacy, patients often experience a variety of negative side effects, with skin toxicity being one of the main concerns. In order to minimise its manifestations and make the patient's treatment more comfortable, scientists and doctors need to understand why it occurs. In this review, we aimed to summarize the currently known molecular mechanisms of cutaneous toxicity. Based on the available data, three main mechanisms of this processes can be identified: the direct inhibition of the finely balanced processes of keratinocyte proliferation and differentiation, the activation of various branches of the pathological immune response, and the development of an infectious process due to the violation of the barrier function of the skin. Current evidence suggests that the composition of the skin microbiota may be one of the possible factors modulating the intensity of immune responses. Further research is needed to confirm this hypothesis, as it may provide a novel target for therapeutic intervention to reduce skin toxic responses and aid in the search for associated diagnostic markers.

https://doi.org/10.37469/0507-3758-2025-71-1-OF-2053
##article.numberofdownloads## 33
##article.numberofviews## 134
pdf (Русский)

References

Trivedi S., Srivastava R.M., Concha-Benavente F., et al. Anti-EGFR targeted monoclonal antibody isotype influences antitumor cellular immunity in head and neck cancer patients. Clin Cancer Res. 2016; 22(21): 5229-5237.-DOI: https://doi.org/10.1158/1078-0432.CCR-15-2971.-URL: https://pubmed.ncbi.nlm.nih.gov/27217441.

Bagchi A., Haidar J.N., Eastman S.W., et al. Molecular basis for necitumumab inhibition of EGFR variants associated with acquired cetuximab resistance. Mol Cancer Ther. 2018; 17(2): 521-531.-DOI: https://doi.org/10.1158/1535-7163.MCT-17-0575.-URL: https://pubmed.ncbi.nlm.nih.gov/29158469.

Remon J., Steuer C.E., Ramalingam S.S., et al. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol. 2018; 29(suppl_1): 20-27.-DOI: https://doi.org/10.1093/ANNONC/MDX704.-URL: https://pubmed.ncbi.nlm.nih.gov/29462255.

Singh D., Kumar Attri B., Kaur Gill R., et al. Review on EGFR inhibitors: critical updates. Mini Rev Med Chem. 2016; 16(14): 1134-1166.-DOI: https://doi.org/10.2174/1389557516666160321114917.-URL: https://pubmed.ncbi.nlm.nih.gov/26996617.

Steins M., Thomas M., Geißler M. Erlotinib. Recent Results Cancer Res. 2018; 211: 1-17.-DOI: https://doi.org/10.1007/978-3-319-91442-8_1.-URL: https://pubmed.ncbi.nlm.nih.gov/30069756.

Sabbah D.A., Hajjo R., Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020; 20(10): 815-834.-DOI: https://doi.org/10.2174/1568026620666200303123102.-URL: https://pubmed.ncbi.nlm.nih.gov/32124699.

Harvey R.D., Adams V.R., Beardslee T., et al. Afatinib for the treatment of EGFR mutation-positive NSCLC: A review of clinical findings. J Oncol Pharm Pract. 2020; 26(6): 1461-1474.-DOI: https://doi.org/10.1177/1078155220931926.-URL: https://pubmed.ncbi.nlm.nih.gov/32567494.

Balagula Y., Garbe C., Myskowski P.L., et al. Clinical presentation and management of dermatological toxicities of epidermal growth factor receptor inhibitors. Int J Dermatol. 2011; 50(2): 129-146.-DOI: https://doi.org/10.1111/J.1365-4632.2010.04791.X.-URL: https://pubmed.ncbi.nlm.nih.gov/21244375.

Pinto C., Barone C.A., Girolomoni G., et al. Management of skin toxicity associated with cetuximab treatment in combination with chemotherapy or radiotherapy. Oncologist. 2011; 16(2): 228-238.-DOI: https://doi.org/10.1634/theoncologist.2010-0298.-URL: https://pubmed.ncbi.nlm.nih.gov/21273511.

Potthoff K., Hofheinz R., Hassel J.C., et al. Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion. Ann Oncol. 2011; 22(3): 524-535.-DOI: https://doi.org/10.1093/ANNONC/MDQ387.-URL: https://pubmed.ncbi.nlm.nih.gov/20709812.

Eilers R.E., Gandhi M., Patel J.D., et al. Dermatologic infections in cancer patients treated with epidermal growth factor receptor inhibitor therapy. J Natl Cancer Inst. 2010; 102(1): 47-53.-DOI: https://doi.org/10.1093/JNCI/DJP439.-URL: https://pubmed.ncbi.nlm.nih.gov/20007525.

Королева И.А., Болотина Л.В., Гладков О.А., et al. Дерматологические реакции. Злокачественные опухоли. 2023; 13(3s2-2): 108-131.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3S2-2-108-131.-URL: https://www.malignanttumors.org/jour/article/view/1249. [Koroleva I.A., Bolotina L.V., Gladkov., et al. Dermatological reactions. Malignant Tumours. 2023; 13(3s2-2): 108-131.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3S2-2-108-131.-URL: https://www.malignanttumors.org/jour/article/view/1249. (in Rus)].

Li J., Yan H. Skin toxicity with anti-EGFR monoclonal antibody in cancer patients: a meta-analysis of 65 randomized controlled trials. Cancer Chemother Pharmacol. 2018; 82(4): 571-583.-DOI: https://doi.org/10.1007/S00280-018-3644-2/METRICS.-URL: https://link.springer.com/article/10.1007/s00280-018-3644-2.

Sun W., Li J. Skin toxicities with epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients: a meta-analysis of randomized controlled trials. Cancer Invest. 2019; 37(6): 253-264.-DOI: https://doi.org/10.1080/07357907.2019.1634089.-URL: https://www.tandfonline.com/doi/abs/10.1080/07357907.2019.1634089.

Busam K.J., Capodieci P., Motzer R., et al. Cutaneous side‐effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol. 2001; 144(6): 1169-1176.-DOI: https://doi.org/10.1046/J.1365-2133.2001.04226.X.

Albanell J., Rojo F., Averbuch S., et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol. 2002; 20(1): 110-124.-DOI: https://doi.org/10.1200/JCO.2002.20.1.110.-URL: https://pubmed.ncbi.nlm.nih.gov/11773160.

Guttman-Yassky E., Mita A., De Jonge M., et al. Characterisation of the cutaneous pathology in non-small cell lung cancer (NSCLC) patients treated with the EGFR tyrosine kinase inhibitor erlotinib. Eur J Cancer. 2010; 46(11): 2010-2019.-DOI: https://doi.org/10.1016/J.EJCA.2010.04.028.-URL: https://pubmed.ncbi.nlm.nih.gov/20621734.

Nardone B., Nicholson K., Newman M., et al. Histopathologic and immunohistochemical characterization of rash to human epidermal growth factor receptor 1 (HER1) and HER1/2 inhibitors in cancer patients. Clin Cancer Res. 2010; 16(17): 4452-4460.-DOI: https://doi.org/10.1158/1078-0432.CCR-10-0421.-URL: https://pubmed.ncbi.nlm.nih.gov/20732960.

Lacouture M.E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nature Reviews Cancer. 2006; 6(10): 803-812.-DOI: https://doi.org/10.1038/nrc1970.-URL: https://www.nature.com/articles/nrc1970.

Brodell L.A., Hepper D., Lind A., et al. Histopathology of acneiform eruptions in patients treated with epidermal growth factor receptor inhibitors. J Cutan Pathol. 2013; 40(10): 865-870.-DOI: https://doi.org/10.1111/CUP.12202.-URL: https://onlinelibrary.wiley.com/doi/full/10.1111/cup.12202.

Sibilia M., Kroismayr R., Lichtenberger B.M., et al. The epidermal growth factor receptor: from development to tumorigenesis. Differentiation. 2007; 75(9): 770-787.-DOI: https://doi.org/10.1111/J.1432-0436.2007.00238.X.-URL: https://pubmed.ncbi.nlm.nih.gov/17999740.

Pastore S., Mascia F., Mariani V., et al. The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol. 2008; 128(6): 1365-1374.-DOI: https://doi.org/10.1038/SJ.JID.5701184.-URL: https://pubmed.ncbi.nlm.nih.gov/18049451.

Wolf C., Qian Y., Brooke M.A., et al. ADAM17/EGFR axis promotes transglutaminase-dependent skin barrier formation through phospholipase C γ1 and protein kinase C pathways. Scientific Reports. 2016; 6(1): 1-14.-DOI: https://doi.org/10.1038/srep39780.-URL: https://www.nature.com/articles/srep39780.

Joly-Tonetti N., Ondet T., Monshouwer M., et al. EGFR inhibitors switch keratinocytes from a proliferative to a differentiative phenotype affecting epidermal development and barrier function. BMC Cancer. 2021; 21(1).-DOI: https://doi.org/10.1186/S12885-020-07685-5.-URL: https://pubmed.ncbi.nlm.nih.gov/33402117.

Li Y., Fu R., Jiang T., et al. Mechanism of lethal skin toxicities induced by epidermal growth factor receptor inhibitors and related treatment strategies. Front Oncol. 2022; 12: 804212.-DOI: https://doi.org/10.3389/FONC.2022.804212.-URL: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.804212/full.

Lynn K.S., Peterson R.J., Koval M. Ruffles and spikes: control of tight junction morphology and permeability by claudins. Biochim Biophys Acta Biomembr. 2020; 1862(9): 183339.-DOI: https://doi.org/10.1016/J.BBAMEM.2020.183339.-URL: https://pubmed.ncbi.nlm.nih.gov/32389670.

Fang H., Wang Y., Xu L., et al. EGFR inhibitor gefitinib regulates barrier function in human epidermal keratinocytes via the modulation of the expression of claudins. Int J Mol Med. 2019; 43(3): 1522-1530.-DOI: https://doi.org/10.3892/IJMM.2018.4046.-URL: https://pubmed.ncbi.nlm.nih.gov/30628660.

Oh J.H., Hur W., Li N., et al. Effects of the epidermal growth factor receptor inhibitor, gefitinib, on lipid and hyaluronic acid synthesis in cultured HaCaT keratinocytes. Exp Dermatol. 2022; 31(6): 918-927.-DOI: https://doi.org/10.1111/EXD.14538.-URL: https://pubmed.ncbi.nlm.nih.gov/35122447.

Campbell P., Morton P.E., Takeichi T., et al. Epithelial inflammation resulting from an inherited loss-of-function mutation in EGFR. J Invest Dermatol. 2014; 134(10): 2570-2578.-DOI: https://doi.org/10.1038/JID.2014.164.-URL: https://pubmed.ncbi.nlm.nih.gov/24691054.

Miettinen P.J., Berger J.E., Meneses J., et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature. 1995; 376(6538): 337-341.-DOI: https://doi.org/10.1038/376337A0.-URL: https://pubmed.ncbi.nlm.nih.gov/7630400.

Chieosilapatham P., Kiatsurayanon C., Umehara Y., et al. Keratinocytes: innate immune cells in atopic dermatitis. Clin Exp Immunol. 2021; 204(3): 296-309.-DOI: https://doi.org/10.1111/CEI.13575.-URL: https://pubmed.ncbi.nlm.nih.gov/33460469.

Coates M., Blanchard S., MacLeod A.S. Innate antimicrobial immunity in the skin: A protective barrier against bacteria, viruses, and fungi. PLoS Pathog. 2018; 14(12).-DOI: https://doi.org/10.1371/JOURNAL.PPAT.1007353.-URL: https://pubmed.ncbi.nlm.nih.gov/30522130.

Pastore S., Lulli D., Girolomoni G. Epidermal growth factor receptor signalling in keratinocyte biology: Implications for skin toxicity of tyrosine kinase inhibitors. Arch Toxicol. 2014; 88(6).-DOI: https://doi.org/10.1007/s00204-014-1244-4.-URL: https://pubmed.ncbi.nlm.nih.gov/24770552.

Lichtenberger B.M., Gerber P.A., Holcmann M., et al. Epidermal EGFR controls cutaneous host defense and prevents inflammation. Sci Transl Med. 2013; 5(199).-DOI: https://doi.org/10.1126/scitranslmed.3005886.-URL: https://pubmed.ncbi.nlm.nih.gov/23966300.

Mascia F., Lam G., Keith C., et al. Genetic ablation of epidermal EGFR reveals the dynamic origin of adverse effects of anti-EGFR therapy. Sci Transl Med. 2013; 5(199).-DOI: https://doi.org/10.1126/scitranslmed.3005773.-URL: https://pubmed.ncbi.nlm.nih.gov/23966299.

Ommori R., Nakamura Y., Miyagawa F., et al. Reduced induction of human β-defensins is involved in the pathological mechanism of cutaneous adverse effects caused by epidermal growth factor receptor monoclonal antibodies. Clin Exp Dermatol. 2020; 45(8): 1055-1058.-DOI: https://doi.org/10.1111/CED.14311.-URL: https://pubmed.ncbi.nlm.nih.gov/32460367.

Amitay-Laish I., David M., Stemmer S.M. Staphylococcus coagulase-positive skin inflammation associated with epidermal growth factor receptor-targeted therapy: an early and a late phase of papulopustular eruptions. Oncologist. 2010; 15(9): 1002-1008.-DOI: https://doi.org/10.1634/THEONCOLOGIST.2010-0063.-URL: https://pubmed.ncbi.nlm.nih.gov/20709888.

Overgaard C.E., Daugherty B.L., Mitchell L.A., et al. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal. 2011; 15(5): 1179.-DOI: https://doi.org/10.1089/ARS.2011.3893.-URL: https://pubmed.ncbi.nlm.nih.gov/21275791.

Chieosilapatham P., Ikeda S., Ogawa H., et al. Tissue-specific regulation of innate immune responses by human cathelicidin LL-37. Curr Pharm Des. 2018; 24(10): 1079-1091.-DOI: https://doi.org/10.2174/1381612824666180327113418.-URL: https://pubmed.ncbi.nlm.nih.gov/29589544.

Chieosilapatham P., Ogawa H., Niyonsaba F. Current insights into the role of human β-defensins in atopic dermatitis. Clin Exp Immunol. 2017; 190(2): 155-166.-DOI: https://doi.org/10.1111/CEI.13013.-URL: https://pubmed.ncbi.nlm.nih.gov/28708318.

Satoh T.K., Mellett M., Meier-Schiesser B., et al. IL-36γ drives skin toxicity induced by EGFR/MEK inhibition and commensal Cutibacterium acnes. J Clin Invest. 2020; 130(3): 1417-1430.-DOI: https://doi.org/10.1172/JCI128678.-URL: https://pubmed.ncbi.nlm.nih.gov/31805013.

Yang Y., Qu L., Mijakovic I., et al. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb Cell Fact. 2022; 21(1).-DOI: https://doi.org/10.1186/S12934-022-01901-6.-URL: https://pubmed.ncbi.nlm.nih.gov/36038876.

Hrestak D., Matijašić M., Paljetak H.Č., et al. Skin microbiota in atopic dermatitis. Int J Mol Sci. 2022; 23(7).-DOI: https://doi.org/10.3390/IJMS23073503.-URL: https://pubmed.ncbi.nlm.nih.gov/35408862.

Gong J.Q., Lin L., Lin T., et al. Skin colonization by Staphylococcus aureus in patients with eczema and atopic dermatitis and relevant combined topical therapy: a double-blind multicentre randomized controlled trial. Br J Dermatol. 2006; 155(4): 680-687.-DOI: https://doi.org/10.1111/J.1365-2133.2006.07410.X.-URL: https://pubmed.ncbi.nlm.nih.gov/16965415.

Chen P., He G., Qian J., et al. Potential role of the skin microbiota in Inflammatory skin diseases. J Cosmet Dermatol. 2021; 20(2): 400-409.-DOI: https://doi.org/10.1111/JOCD.13538.-URL: https://pubmed.ncbi.nlm.nih.gov/32562332.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025