Молекулярные механизмы кожной токсичности ингибиторов EGFR
##article.numberofdownloads## 33
##article.numberofviews## 134
pdf (Русский)

关键词

акнеподобная сыпь
таргетная терапия
кожная токсичность
рецептор эпидермального фактора роста (EGFR)

How to Cite

Десятов, М. О., Сергеева, И. Г., Сидоров, С. В., Боярских, У. А., Федянин, М. Ю., & Филипенко, М. Л. (2025). Молекулярные механизмы кожной токсичности ингибиторов EGFR. VOPROSY ONKOLOGII, 71(1), OF–2053. https://doi.org/10.37469/0507-3758-2025-71-1-OF-2053

摘要

В последние годы терапия онкологических заболеваний с применением ингибиторов рецептора эпидермального фактора роста (EGFR) стала рутинной. Однако несмотря на ее высокую эффективность, пациенты часто сталкиваются с различными нежелательными побочными реакциями, среди которых одно из центральных мест занимает кожная токсичность. Уменьшение ее проявлений для более комфортного лечения пациента требует от ученых и врачей понимания причин ее возникновения. В презентуемом литературном обзоре мы попытались проанализировать описанные на настоящий момент молекулярные механизмы возникновения кожной токсичности. Обобщая опубликованные данные, можно выделить три основных механизма этого процесса: прямое ингибирование тонко сбалансированных между собой процессов пролиферации и дифференцировки кератиноцитов, активация различных ветвей патологического иммунного ответа и присоединение инфекционного процесса как следствие нарушения барьерной функции кожи. Существующие данные позволяют нам предположить, что состав микробиоты кожи может являться одним из возможных факторов, модулирующих выраженность иммунных реакций. Это предположение требует дальнейших исследований и, потенциально, может дать нам дополнительную мишень для терапевтического воздействия с целью уменьшения кожных токсических реакций, а также помочь в поиске их диагностических маркеров.

https://doi.org/10.37469/0507-3758-2025-71-1-OF-2053
##article.numberofdownloads## 33
##article.numberofviews## 134
pdf (Русский)

参考

Trivedi S., Srivastava R.M., Concha-Benavente F., et al. Anti-EGFR targeted monoclonal antibody isotype influences antitumor cellular immunity in head and neck cancer patients. Clin Cancer Res. 2016; 22(21): 5229-5237.-DOI: https://doi.org/10.1158/1078-0432.CCR-15-2971.-URL: https://pubmed.ncbi.nlm.nih.gov/27217441.

Bagchi A., Haidar J.N., Eastman S.W., et al. Molecular basis for necitumumab inhibition of EGFR variants associated with acquired cetuximab resistance. Mol Cancer Ther. 2018; 17(2): 521-531.-DOI: https://doi.org/10.1158/1535-7163.MCT-17-0575.-URL: https://pubmed.ncbi.nlm.nih.gov/29158469.

Remon J., Steuer C.E., Ramalingam S.S., et al. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol. 2018; 29(suppl_1): 20-27.-DOI: https://doi.org/10.1093/ANNONC/MDX704.-URL: https://pubmed.ncbi.nlm.nih.gov/29462255.

Singh D., Kumar Attri B., Kaur Gill R., et al. Review on EGFR inhibitors: critical updates. Mini Rev Med Chem. 2016; 16(14): 1134-1166.-DOI: https://doi.org/10.2174/1389557516666160321114917.-URL: https://pubmed.ncbi.nlm.nih.gov/26996617.

Steins M., Thomas M., Geißler M. Erlotinib. Recent Results Cancer Res. 2018; 211: 1-17.-DOI: https://doi.org/10.1007/978-3-319-91442-8_1.-URL: https://pubmed.ncbi.nlm.nih.gov/30069756.

Sabbah D.A., Hajjo R., Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020; 20(10): 815-834.-DOI: https://doi.org/10.2174/1568026620666200303123102.-URL: https://pubmed.ncbi.nlm.nih.gov/32124699.

Harvey R.D., Adams V.R., Beardslee T., et al. Afatinib for the treatment of EGFR mutation-positive NSCLC: A review of clinical findings. J Oncol Pharm Pract. 2020; 26(6): 1461-1474.-DOI: https://doi.org/10.1177/1078155220931926.-URL: https://pubmed.ncbi.nlm.nih.gov/32567494.

Balagula Y., Garbe C., Myskowski P.L., et al. Clinical presentation and management of dermatological toxicities of epidermal growth factor receptor inhibitors. Int J Dermatol. 2011; 50(2): 129-146.-DOI: https://doi.org/10.1111/J.1365-4632.2010.04791.X.-URL: https://pubmed.ncbi.nlm.nih.gov/21244375.

Pinto C., Barone C.A., Girolomoni G., et al. Management of skin toxicity associated with cetuximab treatment in combination with chemotherapy or radiotherapy. Oncologist. 2011; 16(2): 228-238.-DOI: https://doi.org/10.1634/theoncologist.2010-0298.-URL: https://pubmed.ncbi.nlm.nih.gov/21273511.

Potthoff K., Hofheinz R., Hassel J.C., et al. Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion. Ann Oncol. 2011; 22(3): 524-535.-DOI: https://doi.org/10.1093/ANNONC/MDQ387.-URL: https://pubmed.ncbi.nlm.nih.gov/20709812.

Eilers R.E., Gandhi M., Patel J.D., et al. Dermatologic infections in cancer patients treated with epidermal growth factor receptor inhibitor therapy. J Natl Cancer Inst. 2010; 102(1): 47-53.-DOI: https://doi.org/10.1093/JNCI/DJP439.-URL: https://pubmed.ncbi.nlm.nih.gov/20007525.

Королева И.А., Болотина Л.В., Гладков О.А., et al. Дерматологические реакции. Злокачественные опухоли. 2023; 13(3s2-2): 108-131.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3S2-2-108-131.-URL: https://www.malignanttumors.org/jour/article/view/1249. [Koroleva I.A., Bolotina L.V., Gladkov., et al. Dermatological reactions. Malignant Tumours. 2023; 13(3s2-2): 108-131.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3S2-2-108-131.-URL: https://www.malignanttumors.org/jour/article/view/1249. (in Rus)].

Li J., Yan H. Skin toxicity with anti-EGFR monoclonal antibody in cancer patients: a meta-analysis of 65 randomized controlled trials. Cancer Chemother Pharmacol. 2018; 82(4): 571-583.-DOI: https://doi.org/10.1007/S00280-018-3644-2/METRICS.-URL: https://link.springer.com/article/10.1007/s00280-018-3644-2.

Sun W., Li J. Skin toxicities with epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients: a meta-analysis of randomized controlled trials. Cancer Invest. 2019; 37(6): 253-264.-DOI: https://doi.org/10.1080/07357907.2019.1634089.-URL: https://www.tandfonline.com/doi/abs/10.1080/07357907.2019.1634089.

Busam K.J., Capodieci P., Motzer R., et al. Cutaneous side‐effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol. 2001; 144(6): 1169-1176.-DOI: https://doi.org/10.1046/J.1365-2133.2001.04226.X.

Albanell J., Rojo F., Averbuch S., et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol. 2002; 20(1): 110-124.-DOI: https://doi.org/10.1200/JCO.2002.20.1.110.-URL: https://pubmed.ncbi.nlm.nih.gov/11773160.

Guttman-Yassky E., Mita A., De Jonge M., et al. Characterisation of the cutaneous pathology in non-small cell lung cancer (NSCLC) patients treated with the EGFR tyrosine kinase inhibitor erlotinib. Eur J Cancer. 2010; 46(11): 2010-2019.-DOI: https://doi.org/10.1016/J.EJCA.2010.04.028.-URL: https://pubmed.ncbi.nlm.nih.gov/20621734.

Nardone B., Nicholson K., Newman M., et al. Histopathologic and immunohistochemical characterization of rash to human epidermal growth factor receptor 1 (HER1) and HER1/2 inhibitors in cancer patients. Clin Cancer Res. 2010; 16(17): 4452-4460.-DOI: https://doi.org/10.1158/1078-0432.CCR-10-0421.-URL: https://pubmed.ncbi.nlm.nih.gov/20732960.

Lacouture M.E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nature Reviews Cancer. 2006; 6(10): 803-812.-DOI: https://doi.org/10.1038/nrc1970.-URL: https://www.nature.com/articles/nrc1970.

Brodell L.A., Hepper D., Lind A., et al. Histopathology of acneiform eruptions in patients treated with epidermal growth factor receptor inhibitors. J Cutan Pathol. 2013; 40(10): 865-870.-DOI: https://doi.org/10.1111/CUP.12202.-URL: https://onlinelibrary.wiley.com/doi/full/10.1111/cup.12202.

Sibilia M., Kroismayr R., Lichtenberger B.M., et al. The epidermal growth factor receptor: from development to tumorigenesis. Differentiation. 2007; 75(9): 770-787.-DOI: https://doi.org/10.1111/J.1432-0436.2007.00238.X.-URL: https://pubmed.ncbi.nlm.nih.gov/17999740.

Pastore S., Mascia F., Mariani V., et al. The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol. 2008; 128(6): 1365-1374.-DOI: https://doi.org/10.1038/SJ.JID.5701184.-URL: https://pubmed.ncbi.nlm.nih.gov/18049451.

Wolf C., Qian Y., Brooke M.A., et al. ADAM17/EGFR axis promotes transglutaminase-dependent skin barrier formation through phospholipase C γ1 and protein kinase C pathways. Scientific Reports. 2016; 6(1): 1-14.-DOI: https://doi.org/10.1038/srep39780.-URL: https://www.nature.com/articles/srep39780.

Joly-Tonetti N., Ondet T., Monshouwer M., et al. EGFR inhibitors switch keratinocytes from a proliferative to a differentiative phenotype affecting epidermal development and barrier function. BMC Cancer. 2021; 21(1).-DOI: https://doi.org/10.1186/S12885-020-07685-5.-URL: https://pubmed.ncbi.nlm.nih.gov/33402117.

Li Y., Fu R., Jiang T., et al. Mechanism of lethal skin toxicities induced by epidermal growth factor receptor inhibitors and related treatment strategies. Front Oncol. 2022; 12: 804212.-DOI: https://doi.org/10.3389/FONC.2022.804212.-URL: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.804212/full.

Lynn K.S., Peterson R.J., Koval M. Ruffles and spikes: control of tight junction morphology and permeability by claudins. Biochim Biophys Acta Biomembr. 2020; 1862(9): 183339.-DOI: https://doi.org/10.1016/J.BBAMEM.2020.183339.-URL: https://pubmed.ncbi.nlm.nih.gov/32389670.

Fang H., Wang Y., Xu L., et al. EGFR inhibitor gefitinib regulates barrier function in human epidermal keratinocytes via the modulation of the expression of claudins. Int J Mol Med. 2019; 43(3): 1522-1530.-DOI: https://doi.org/10.3892/IJMM.2018.4046.-URL: https://pubmed.ncbi.nlm.nih.gov/30628660.

Oh J.H., Hur W., Li N., et al. Effects of the epidermal growth factor receptor inhibitor, gefitinib, on lipid and hyaluronic acid synthesis in cultured HaCaT keratinocytes. Exp Dermatol. 2022; 31(6): 918-927.-DOI: https://doi.org/10.1111/EXD.14538.-URL: https://pubmed.ncbi.nlm.nih.gov/35122447.

Campbell P., Morton P.E., Takeichi T., et al. Epithelial inflammation resulting from an inherited loss-of-function mutation in EGFR. J Invest Dermatol. 2014; 134(10): 2570-2578.-DOI: https://doi.org/10.1038/JID.2014.164.-URL: https://pubmed.ncbi.nlm.nih.gov/24691054.

Miettinen P.J., Berger J.E., Meneses J., et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature. 1995; 376(6538): 337-341.-DOI: https://doi.org/10.1038/376337A0.-URL: https://pubmed.ncbi.nlm.nih.gov/7630400.

Chieosilapatham P., Kiatsurayanon C., Umehara Y., et al. Keratinocytes: innate immune cells in atopic dermatitis. Clin Exp Immunol. 2021; 204(3): 296-309.-DOI: https://doi.org/10.1111/CEI.13575.-URL: https://pubmed.ncbi.nlm.nih.gov/33460469.

Coates M., Blanchard S., MacLeod A.S. Innate antimicrobial immunity in the skin: A protective barrier against bacteria, viruses, and fungi. PLoS Pathog. 2018; 14(12).-DOI: https://doi.org/10.1371/JOURNAL.PPAT.1007353.-URL: https://pubmed.ncbi.nlm.nih.gov/30522130.

Pastore S., Lulli D., Girolomoni G. Epidermal growth factor receptor signalling in keratinocyte biology: Implications for skin toxicity of tyrosine kinase inhibitors. Arch Toxicol. 2014; 88(6).-DOI: https://doi.org/10.1007/s00204-014-1244-4.-URL: https://pubmed.ncbi.nlm.nih.gov/24770552.

Lichtenberger B.M., Gerber P.A., Holcmann M., et al. Epidermal EGFR controls cutaneous host defense and prevents inflammation. Sci Transl Med. 2013; 5(199).-DOI: https://doi.org/10.1126/scitranslmed.3005886.-URL: https://pubmed.ncbi.nlm.nih.gov/23966300.

Mascia F., Lam G., Keith C., et al. Genetic ablation of epidermal EGFR reveals the dynamic origin of adverse effects of anti-EGFR therapy. Sci Transl Med. 2013; 5(199).-DOI: https://doi.org/10.1126/scitranslmed.3005773.-URL: https://pubmed.ncbi.nlm.nih.gov/23966299.

Ommori R., Nakamura Y., Miyagawa F., et al. Reduced induction of human β-defensins is involved in the pathological mechanism of cutaneous adverse effects caused by epidermal growth factor receptor monoclonal antibodies. Clin Exp Dermatol. 2020; 45(8): 1055-1058.-DOI: https://doi.org/10.1111/CED.14311.-URL: https://pubmed.ncbi.nlm.nih.gov/32460367.

Amitay-Laish I., David M., Stemmer S.M. Staphylococcus coagulase-positive skin inflammation associated with epidermal growth factor receptor-targeted therapy: an early and a late phase of papulopustular eruptions. Oncologist. 2010; 15(9): 1002-1008.-DOI: https://doi.org/10.1634/THEONCOLOGIST.2010-0063.-URL: https://pubmed.ncbi.nlm.nih.gov/20709888.

Overgaard C.E., Daugherty B.L., Mitchell L.A., et al. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal. 2011; 15(5): 1179.-DOI: https://doi.org/10.1089/ARS.2011.3893.-URL: https://pubmed.ncbi.nlm.nih.gov/21275791.

Chieosilapatham P., Ikeda S., Ogawa H., et al. Tissue-specific regulation of innate immune responses by human cathelicidin LL-37. Curr Pharm Des. 2018; 24(10): 1079-1091.-DOI: https://doi.org/10.2174/1381612824666180327113418.-URL: https://pubmed.ncbi.nlm.nih.gov/29589544.

Chieosilapatham P., Ogawa H., Niyonsaba F. Current insights into the role of human β-defensins in atopic dermatitis. Clin Exp Immunol. 2017; 190(2): 155-166.-DOI: https://doi.org/10.1111/CEI.13013.-URL: https://pubmed.ncbi.nlm.nih.gov/28708318.

Satoh T.K., Mellett M., Meier-Schiesser B., et al. IL-36γ drives skin toxicity induced by EGFR/MEK inhibition and commensal Cutibacterium acnes. J Clin Invest. 2020; 130(3): 1417-1430.-DOI: https://doi.org/10.1172/JCI128678.-URL: https://pubmed.ncbi.nlm.nih.gov/31805013.

Yang Y., Qu L., Mijakovic I., et al. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb Cell Fact. 2022; 21(1).-DOI: https://doi.org/10.1186/S12934-022-01901-6.-URL: https://pubmed.ncbi.nlm.nih.gov/36038876.

Hrestak D., Matijašić M., Paljetak H.Č., et al. Skin microbiota in atopic dermatitis. Int J Mol Sci. 2022; 23(7).-DOI: https://doi.org/10.3390/IJMS23073503.-URL: https://pubmed.ncbi.nlm.nih.gov/35408862.

Gong J.Q., Lin L., Lin T., et al. Skin colonization by Staphylococcus aureus in patients with eczema and atopic dermatitis and relevant combined topical therapy: a double-blind multicentre randomized controlled trial. Br J Dermatol. 2006; 155(4): 680-687.-DOI: https://doi.org/10.1111/J.1365-2133.2006.07410.X.-URL: https://pubmed.ncbi.nlm.nih.gov/16965415.

Chen P., He G., Qian J., et al. Potential role of the skin microbiota in Inflammatory skin diseases. J Cosmet Dermatol. 2021; 20(2): 400-409.-DOI: https://doi.org/10.1111/JOCD.13538.-URL: https://pubmed.ncbi.nlm.nih.gov/32562332.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025