Abstract
Esophageal squamous cell carcinoma (ESCC) is a group of heterogeneous tumors with a different prognosis. In recent years, various molecular signatures of ESCC have been identified, which are different in different populations. The aim of the study was the molecular typing of ESCC patients in southern Russia and the assessment of patient survival, taking into account the identified tumor molecular genetic subtype. The material for the study was the sections of FFPE-blocks of 124 patients with ESCC. Tumor and non-tumor esophagus cells isolation was carried out by laser microdissection with contactless capture. 248 DNA samples were extracted from the cells by the phenol-chloroform method. For molecular typing of ESCC, the relative copy number variation (CNV) of 8 genes (CUL3, ATG7, SOX2, TP63, YAP1, VGLL4, CDK6, KDM6A) was determined by Real-Time qPCR and 7 single nucleotide polymorphisms (SNP) (NFE2L2 (c.85G> A), NOTCH1 ( c.1379C> T), NOTCH1 (c.1451G> T), ZNF750 (c.414C> A), ZNF750 (c..1621G> A), SMARCA4 (p.Q758 *, c.2272C> T), KMT2D (Q5170 *, c.15508C> T)) were determined by the method of Sanger direct sequencing. During the study, in ESCC patients of the Southern Russia population identified SNP in genes NFE2L2, NOTCH1, SMARCA4, KMT2D and CNV of genes CUL3, ATG7, SOX2, TP63, YAP1, VGLL4, CDK6 and KDM6A, earlier described for populations of Eastern Europe, Canada and the USA. Three molecular genetic subtypes of ESCC were verified, based on the differences in SNP and CNV of these genes: ESCC1 was verified in 31.5%, ESCC2 in 66.1%, and ESCC3 in 2.4% of patients. At the same time, higher survival rates were established in ESCC patients with the molecular genetic subtype ESCC2, as compared with ESCC1 and ESCC3. Differences in survival between the three groups were statistically significant (p = 0.00001). Thus, the determination of the molecular genetic subtype of ESCC is an important approach to improve the prediction of the course of this disease and the possibility of adjusting the appropriate therapy.
References
Xiong T., Wang M., Zhao J., et al. An esophageal squamous cell carcinoma classification system that reveals potential targets for therapy. Oncotarget. 2017;8(30):49851-49860.
Кит О.И., Водолажский Д.И., Базаев А.Л., Златник E.Ю., Колесников Е.Н., Трифанов В.С., Харин Л.В., Кутилин Д.С. Молекулярные маркеры плоскоклеточного рака пищевода // Современные проблемы науки и образования. - 2017. - № 5.Доступно по: http:// www.science-education.ru/ru/article/view?id=26709. Ссылка активна на 12.01.2019.
The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017; 541(7636): 169-175.
Кутилин Д.С., Енин Я.С., Петрусенко Н.А., Водолажский Д.И. Изменение копийности генетических локусов при малигнизации тканей легкого // Современные проблемы науки и образования. - 2016. - № 6.[Ku-tilin DS, Enin YS, Petrusenko NA, Vodolazhsky DI. Copy number variation of genetic loci with malignization of lung tissue. Modern problems of science and education. 2016; 6. (In Russ).]; Доступно по: https://www.science-education.ru/ru/article/view?id=25994. Ссылка активна на 12.01.2019.
Кит О.И., Водолажский Д.И., Кутилин Д.С., Гудуева Е.Н. Изменение копийности генетических локусов при раке желудка// Молекулярная биология. - 2015. - Т. 49, № 4. - С. 658-666. DOI: 10.7868/S0026898415040096
cBioportal. Available from: http://www.cbioportal.org.
TCGA (The Cancer Genome Atlas). Available from: https:// tcga-data.nci.nih.gov, https://portal.gdc.cancer.gov.
Mukhopadhyay A., Berrett KC, Kc U., Clair PM, Pop SM, Carr SR, Witt BL, Oliver T.G. Sox2 cooperates with Lkb1 loss in a mouse model of squamous cell lung cancer. Cell Reports. 2014;8 (1): 40-9. DOI: 10.1016/j.cel-rep.2014.05.036
Tani Y. Akiyama Y. Fukamachi H., Yanagihara K., Yuasa Y. Transcription factor SOX2 up-regulates stomach-specific pepsinogen A gene expression.Journal of Cancer Research and Clinical Oncology. 2007; 133 (4): 263-9.
Deutsch GB, Zielonka EM, Coutandin D., Weber TA, Schafer B., Hannewald J., Luh LM, Durst FG, Ibrahim M., Hoffmann J., Niesen FH, Senturk A., Kunkel H., Brutschy B., Schleiff E., Knapp S., Acker-Palmer A., Grez M., McKeon F., Dotsch V. DNA damage in oocytes induces a switch of the quality control factor TAp63a from dimer to tetramer. Cell. 2011; 144 (4): 566-7.
Zhao B., Kim J., Ye X., Lai ZC, Guan K.L. Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Research. 2009; 69 (3): 1089-98.
Wimuttisuk W., Singer J.D. The Cullin3 Ubiquitin Ligase Functions as a Nedd8-bound Heterodimer. Mol Biol Cell. 2007; 18 (3): 899-909.
Xiong J. Atg7 in development and disease: panacea or Pandora's Box? Protein Cell. 2015;6(10):722-34.
Jiao S., et al. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat. Commun. 2017; 8, 14058 DOI: 10.1038/ncom-ms14058
Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott RG, Schafer M, Fajmann S, Schlederer M, Schiefer AI, Reichart U, Mayerhofer M, Hoeller C, Zochbauer-Muller S, Kerjaschki D, Bock C, Kenner L, Hoefler G, Freissmuth M, Green AR, Moriggl R, Busslinger M, Malumbres M, Sexl V. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell. 2013; 24 (2): 167-81.
Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nature Reviews Molecular Cell Biology. 2013; 14 (8): 518-28.
Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability an evolving hallmark of cancer". Nature Reviews Molecular Cell Biology. 2010; 11 (3): 220-28.
Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007; 318 (5849): 447-50.
Новикова М.В., Рыбко В.А., Хромова Н.В., Фармаковская М.Д., Копнин П.Б. Роль белков Notch в процессах канцерогенеза.// Успехи молекулярной онкологии. - 2015. - Т.2. - С.30-42. [Novikova M.V., Rybko V.A., Khromova N.V., Farmakovskaya M.D., Kopnin P.B. The role of Notch pathway in carcinogenesis. Advances in molecular oncology. 2015; 2:30-42. (In Russ).] DOI: 10.17650/2313-805X-2015-2-3-30-42
Li YY Hanna GJ, Laga AC, Haddad RI, Lorch JH, Hammerman PS. Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin Cancer Res. 2015;21(6):1447-56.
South AP, Purdie KJ, Watt SA, et al. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J Invest Dermatol. 2014;134(10):2630-2638
Hazawa M, Lin D-C, Handral H, et al. ZNF750 is a lineage-specific tumour suppressor in squamous cell carcinoma. Oncogene. 2017; 36: 2243-2254.
Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015;21(10):1190-8.
Hodges C, Kirkland JG, Crabtree GR. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harbor Perspectives in Medicine. 2016; 6 (8): a026930.
Stanton BZ, Hodges C, Calarco JP, Braun SM, Ku WL, Kadoch C, Zhao K, Crabtree GR. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nature Genetics. 2017; 49 (2): 282-288.
Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J. SWI/ SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. The Journal of Biological Chemistry. 2002; 277 (25): 22330-7.
Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife. 2013; 2: e01503.
Kim DH, Kim J, Kwon JS, Sandhu J, Tontonoz P, Lee SK, Lee S, Lee JW. Critical Roles of the Histone Meth-yltransferase MLL4/KMT2D in Murine Hepatic Steatosis Directed by ABL1 and PPARy2. Cell Reports. 2016; 17 (6): 1671-1682.
Rao RC, Dou Y Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nature Reviews. 2015; Cancer. 15 (6): 334-46.
Lee J, Kim DH, Lee S, Yang QH, Lee DK, Lee SK, Roeder RG, Lee JW. A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyl-transferase MLL3 or its paralogue MLL4. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106 (21): 8513-8.
Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y Zhao C, et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nature Medicine. 2015; 21 (10): 1199-208. DOI: 10.1038/nm.3943
Kim JH, Sharma A, Dhar SS, Lee SH, Gu B, Chan CH, Lin HK, Lee MG. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Research. 2014;74 (6): 1705-17.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2019