The role of autophagy and vesicular trafficking in melanoma development
##article.numberofdownloads## 13
##article.numberofviews## 124
pdf (Русский)

Keywords

review
autophagy
endocytosis
malignant melanoma
uveal melanoma
vesicular trafficking

How to Cite

Taskaeva, I., Shatruk, A., & Bgatova, N. (2021). The role of autophagy and vesicular trafficking in melanoma development. Voprosy Onkologii, 67(4), 480–484. https://doi.org/10.37469/0507-3758-2021-67-4-480-484

Abstract

The role of autophagy and vesicular trafficking in carcinogenesis, including melanoma, is ambiguous: on the one hand, they contribute to the maintenance of intracellular homeostasis and the tumor progression, on the other hand, they can initiate cancer cell death. These processes have a significant impact on the metabolism of melanoma cells and could be associated with metastasis, tumor growth and progression. The review examines the mechanisms of autophagy and vesicular trafficking and presents the modern literature data demonstrating the role of the intracellular transport system in oncogenesis and melanoma development. A literature search was performed in the PubMed database.

https://doi.org/10.37469/0507-3758-2021-67-4-480-484
##article.numberofdownloads## 13
##article.numberofviews## 124
pdf (Русский)

References

Kozar I, Margue C, Rothengatter S et al. Many ways to resistance: how melanoma cells evade targeted therapies // Biochim Biophys Acta Rev Cancer. 2019;1871(2):313–322. https: // doi: 10.1016/j.bbcan.2019.02.002

Chopra A, Sharma R, Rao UNM. Pathology of melanoma // Surg Clin North Am. 2020;100 (1):43‐–9. https: // doi: 10.1016/j.suc.2019.09.004

Carr S, Smith C, Wernberg J. Epidemiology and risk factors of melanoma // Surg Clin North Am. 2020;100(1):1–12. https: // doi: 10.1016/j.suc.2019.09.005.

Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms // J Pathol. 2010;221 (1):3–12. https: // doi: 10.1002/path.2697

Hurley JH, Young L.N. Mechanisms of autophagy initiation // Annu Rev Biochem. 2017;86:225–244. https: // doi: 10.1146/annurev-biochem-061516-044820

Takahashi Y, Meyerkord CL, Hori T et al. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy // Autophagy. 2011;7 (1):61–73. https: // doi: 10.4161/auto.7.1.14015

Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation // Antioxid Redox Signal. 2014;20(3):460–473. https: // doi: 10.1089/ars.2013.5371

Muro S. Alterations in cellular processes involving vesicular trafficking and implications in drug delivery // Biomimetics. 2018;3(3):19–56. https: // doi: 10.3390/biomimetics3030019

Vassilieva EV, Nusrat A. Vesicular trafficking: molecular tools and targets // Methods Mol Biol. 2008;440:3–14. https: // doi: 10.1007/978-1-59745-178-9_1

Doherty GJ, McMahon HT. Mechanisms of endocytosis // Annu Rev Biochem. 2009;78:857–902. https: // doi: 10.1146/annurev.biochem.78.081307.110540

Elkin SR, Bendris N, Reis CR et al. A systematic analysis reveals heterogeneous changes in the endocytic activities of cancer cells // Cancer Res. 2015;75(21):4640–4650. https: // doi: 10.1158/0008-5472.CAN-15-0939

Smythe E, Warren G. The mechanism of receptor-mediated endocytosis // Eur J Biochem. 1991;202(3):265–275. https: // doi: 10.1111/j.1432-1033.1991.tb16424.x

Huotari J, Helenius A. Endosome maturation // EMBO J. 2011;30(17):3481–3500. https: // doi: 10.1038/emboj.2011.286

Zahoor M, Farhan H. Crosstalk of autophagy and the secretory pathway and its role in diseases // Int Rev Cell Mol Biol. 2018;337:153–184. https: // doi: 10.1016/bs.ircmb.2017.12.004

Puri C, Renna M, Bento CF et al. Diverse autophagosome membrane sources coalesce in recycling endosomes // Cell. 2013;154(6):1285–99. https: // doi: 10.1016/j.cell.2013.08.044

Tang DYL, Ellis RA, Lovat PE. Prognostic impact of autophagy biomarkers for cutaneous melanoma // Front Oncol. 2016;6:236–257. https: // doi: 10.3389/fonc.2016.00236

Caswell PT, Vadrevu S, Norman JC. Integrins: masters and slaves of endocytic transport // Nat Rev Mol Cell Biol. 2009;10(12):843–853. https: // doi: 10.1038/nrm2799

Mellman I, Yarden Y. Endocytosis and cancer // Cold Spring Harb Perspect Biol. 2013;5(12):345–351. https: // doi: 10.1101/cshperspect.a016949

Barbieri E, Di Fiore PP, Sigismund S. Endocytic control of signaling at the plasma membrane // Curr Opin Cell Biol. 2016;39:21–27. https: // doi: 10.1016/j.ceb.2016.01.012

Mahabeleshwar GH, Feng W, Reddy K et al. Mechanisms of integrin–vascular endothelial growth factor receptor cross-activation in angiogenesis // Circ Res. 2007;101(6):570–580. https: // doi: 10.1161/CIRCRESAHA.107.155655

Rahmati M, Ebrahim S, Hashemi S et al. New insights on the role of autophagy in the pathogenesis and treatment of melanoma // Mol Biol Rep. 2020;47(11):9021–9032. https: // doi: 10.1007/s11033-020-05886-6

Giatromanolaki AN, Charitoudis GS, Bechrakis N.E et al. Autophagy patterns and prognosis in uveal melanomas // Mod Pathol. 2011;24(8):1036–45. https: // doi: 10.1038/modpathol.2011.63

Broggi G, Ieni A, Russo D et al. The macro-autophagy-related protein Beclin-1 immunohistochemical expression correlates with tumor cell type and clinical behavior of uveal melanoma // Front Oncol. 2020;10:589849. https: // doi: 10.3389/fonc.2020.589849.

Lazova R, Camp RL, Klump V et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome // Clin Cancer Res. 2012;18(2):370–379. https: // doi: 10.1158/1078-0432.CCR-11-1282

Ma X.H, Piao S, Wang D et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma // Clin Cancer Res. 2011;17(10):3478–3489. https: // doi: 10.1158/1078-0432.CCR-10-2372

Miracco C, Cevenini G, Franchi A et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions // Hum Pathol. 2010;41(4):503–512. https: // doi: 10.1016/j.humpath.2009.09.004

Ren M, Wei CY, Wang L et al. Integration of individual prediction index based on autophagy-related genes and clinical phenomes in melanoma patients // Clin Transl Med. 2020;10(4):e132. https: // doi: 10.1002/ctm2.132

Xie X, Koh JY, Price S et al. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma // Cancer Discov. 2015;5(4):410–423. https: // doi: 10.1158/2159-8290.CD-14-1473

Li S, Song Y, Quach C et al. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance // Nat Commun. 2019;10(1):1693. https: // doi: 10.1038/s41467-019-09634-8

Liu X, Wu J, Qin H, Xu J. The role of autophagy in the resistance to BRAF inhibition in BRAF-mutated melanoma // Target Oncol. 2018;13(4):437–446. https: // doi: 10.1007/s11523-018-0565-2

Li P, He J, Yang Z et al. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression // Autophagy. 2020;16(7):1186–1199. https: // doi: 10.1080/15548627.2019.1659614

Ambrosini G, Musi E, Ho AL et al. Inhibition of mutant GNAQ signaling in uveal melanoma induces AMPK-dependent autophagic cell death // Mol Cancer Ther. 2013;12(5):768–76. https: // doi: 10.1158/1535-7163.MCT-12-1020

Gong C, Xia H. Resveratrol suppresses melanoma growth by promoting autophagy through inhibiting the PI3K/AKT/mTOR signaling pathway // Exp Ther Med. 2020;19(3):1878–1886. https: // doi: 10.3892/etm.2019.8359

Zhao Y, Wang W, Min I et al. BRAF V600E-dependent role of autophagy in uveal melanoma // J Cancer Res Clin Oncol. 2017;143(3):447–455. https: // doi: 10.1007/s00432-016-2317-y

Alonso-Curbelo D, Soengas MS. Hyperactivated endolysosomal trafficking in melanoma // Oncotarget. 2015;6(5):2583–2584. https: // doi: 10.18632/oncotarget.3141

Demirsoy S, Martin, S, Maes H, Agostinis P. Adapt, recycle, and move on: proteostasis and trafficking mechanisms in melanoma // Front Oncol. 2016;6:240–254. https: // doi: 10.3389/fonc.2016.00240

Rather RA, Bhagat M, Singh SK Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma // Mutat Res. 2020;785:108321. https: // doi: 10.1016/j.mrrev.2020.108321

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021