Abstract
The role of autophagy and vesicular trafficking in carcinogenesis, including melanoma, is ambiguous: on the one hand, they contribute to the maintenance of intracellular homeostasis and the tumor progression, on the other hand, they can initiate cancer cell death. These processes have a significant impact on the metabolism of melanoma cells and could be associated with metastasis, tumor growth and progression. The review examines the mechanisms of autophagy and vesicular trafficking and presents the modern literature data demonstrating the role of the intracellular transport system in oncogenesis and melanoma development. A literature search was performed in the PubMed database.
References
Kozar I, Margue C, Rothengatter S et al. Many ways to resistance: how melanoma cells evade targeted therapies // Biochim Biophys Acta Rev Cancer. 2019;1871(2):313–322. https: // doi: 10.1016/j.bbcan.2019.02.002
Chopra A, Sharma R, Rao UNM. Pathology of melanoma // Surg Clin North Am. 2020;100 (1):43‐–9. https: // doi: 10.1016/j.suc.2019.09.004
Carr S, Smith C, Wernberg J. Epidemiology and risk factors of melanoma // Surg Clin North Am. 2020;100(1):1–12. https: // doi: 10.1016/j.suc.2019.09.005.
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms // J Pathol. 2010;221 (1):3–12. https: // doi: 10.1002/path.2697
Hurley JH, Young L.N. Mechanisms of autophagy initiation // Annu Rev Biochem. 2017;86:225–244. https: // doi: 10.1146/annurev-biochem-061516-044820
Takahashi Y, Meyerkord CL, Hori T et al. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy // Autophagy. 2011;7 (1):61–73. https: // doi: 10.4161/auto.7.1.14015
Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation // Antioxid Redox Signal. 2014;20(3):460–473. https: // doi: 10.1089/ars.2013.5371
Muro S. Alterations in cellular processes involving vesicular trafficking and implications in drug delivery // Biomimetics. 2018;3(3):19–56. https: // doi: 10.3390/biomimetics3030019
Vassilieva EV, Nusrat A. Vesicular trafficking: molecular tools and targets // Methods Mol Biol. 2008;440:3–14. https: // doi: 10.1007/978-1-59745-178-9_1
Doherty GJ, McMahon HT. Mechanisms of endocytosis // Annu Rev Biochem. 2009;78:857–902. https: // doi: 10.1146/annurev.biochem.78.081307.110540
Elkin SR, Bendris N, Reis CR et al. A systematic analysis reveals heterogeneous changes in the endocytic activities of cancer cells // Cancer Res. 2015;75(21):4640–4650. https: // doi: 10.1158/0008-5472.CAN-15-0939
Smythe E, Warren G. The mechanism of receptor-mediated endocytosis // Eur J Biochem. 1991;202(3):265–275. https: // doi: 10.1111/j.1432-1033.1991.tb16424.x
Huotari J, Helenius A. Endosome maturation // EMBO J. 2011;30(17):3481–3500. https: // doi: 10.1038/emboj.2011.286
Zahoor M, Farhan H. Crosstalk of autophagy and the secretory pathway and its role in diseases // Int Rev Cell Mol Biol. 2018;337:153–184. https: // doi: 10.1016/bs.ircmb.2017.12.004
Puri C, Renna M, Bento CF et al. Diverse autophagosome membrane sources coalesce in recycling endosomes // Cell. 2013;154(6):1285–99. https: // doi: 10.1016/j.cell.2013.08.044
Tang DYL, Ellis RA, Lovat PE. Prognostic impact of autophagy biomarkers for cutaneous melanoma // Front Oncol. 2016;6:236–257. https: // doi: 10.3389/fonc.2016.00236
Caswell PT, Vadrevu S, Norman JC. Integrins: masters and slaves of endocytic transport // Nat Rev Mol Cell Biol. 2009;10(12):843–853. https: // doi: 10.1038/nrm2799
Mellman I, Yarden Y. Endocytosis and cancer // Cold Spring Harb Perspect Biol. 2013;5(12):345–351. https: // doi: 10.1101/cshperspect.a016949
Barbieri E, Di Fiore PP, Sigismund S. Endocytic control of signaling at the plasma membrane // Curr Opin Cell Biol. 2016;39:21–27. https: // doi: 10.1016/j.ceb.2016.01.012
Mahabeleshwar GH, Feng W, Reddy K et al. Mechanisms of integrin–vascular endothelial growth factor receptor cross-activation in angiogenesis // Circ Res. 2007;101(6):570–580. https: // doi: 10.1161/CIRCRESAHA.107.155655
Rahmati M, Ebrahim S, Hashemi S et al. New insights on the role of autophagy in the pathogenesis and treatment of melanoma // Mol Biol Rep. 2020;47(11):9021–9032. https: // doi: 10.1007/s11033-020-05886-6
Giatromanolaki AN, Charitoudis GS, Bechrakis N.E et al. Autophagy patterns and prognosis in uveal melanomas // Mod Pathol. 2011;24(8):1036–45. https: // doi: 10.1038/modpathol.2011.63
Broggi G, Ieni A, Russo D et al. The macro-autophagy-related protein Beclin-1 immunohistochemical expression correlates with tumor cell type and clinical behavior of uveal melanoma // Front Oncol. 2020;10:589849. https: // doi: 10.3389/fonc.2020.589849.
Lazova R, Camp RL, Klump V et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome // Clin Cancer Res. 2012;18(2):370–379. https: // doi: 10.1158/1078-0432.CCR-11-1282
Ma X.H, Piao S, Wang D et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma // Clin Cancer Res. 2011;17(10):3478–3489. https: // doi: 10.1158/1078-0432.CCR-10-2372
Miracco C, Cevenini G, Franchi A et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions // Hum Pathol. 2010;41(4):503–512. https: // doi: 10.1016/j.humpath.2009.09.004
Ren M, Wei CY, Wang L et al. Integration of individual prediction index based on autophagy-related genes and clinical phenomes in melanoma patients // Clin Transl Med. 2020;10(4):e132. https: // doi: 10.1002/ctm2.132
Xie X, Koh JY, Price S et al. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma // Cancer Discov. 2015;5(4):410–423. https: // doi: 10.1158/2159-8290.CD-14-1473
Li S, Song Y, Quach C et al. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance // Nat Commun. 2019;10(1):1693. https: // doi: 10.1038/s41467-019-09634-8
Liu X, Wu J, Qin H, Xu J. The role of autophagy in the resistance to BRAF inhibition in BRAF-mutated melanoma // Target Oncol. 2018;13(4):437–446. https: // doi: 10.1007/s11523-018-0565-2
Li P, He J, Yang Z et al. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression // Autophagy. 2020;16(7):1186–1199. https: // doi: 10.1080/15548627.2019.1659614
Ambrosini G, Musi E, Ho AL et al. Inhibition of mutant GNAQ signaling in uveal melanoma induces AMPK-dependent autophagic cell death // Mol Cancer Ther. 2013;12(5):768–76. https: // doi: 10.1158/1535-7163.MCT-12-1020
Gong C, Xia H. Resveratrol suppresses melanoma growth by promoting autophagy through inhibiting the PI3K/AKT/mTOR signaling pathway // Exp Ther Med. 2020;19(3):1878–1886. https: // doi: 10.3892/etm.2019.8359
Zhao Y, Wang W, Min I et al. BRAF V600E-dependent role of autophagy in uveal melanoma // J Cancer Res Clin Oncol. 2017;143(3):447–455. https: // doi: 10.1007/s00432-016-2317-y
Alonso-Curbelo D, Soengas MS. Hyperactivated endolysosomal trafficking in melanoma // Oncotarget. 2015;6(5):2583–2584. https: // doi: 10.18632/oncotarget.3141
Demirsoy S, Martin, S, Maes H, Agostinis P. Adapt, recycle, and move on: proteostasis and trafficking mechanisms in melanoma // Front Oncol. 2016;6:240–254. https: // doi: 10.3389/fonc.2016.00240
Rather RA, Bhagat M, Singh SK Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma // Mutat Res. 2020;785:108321. https: // doi: 10.1016/j.mrrev.2020.108321
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2021