Abstract
Introduction. Wild-type GISTs are a heterogeneous tumors with different clinical and molecular characteristics which account for about 15% of all GISTs. They include cases with MAPK and PI3K signaling pathways activation, as well as GISTs with a deficiency of succinate dehydrogenase (SDH). SDH deficiency causes uncontrolled cell proliferation and neoangiogenesis.
Purpose. To study the clinical and morphological features of GIST with SDH deficiency.
Materials and methods. In the study of 244 GISTs, 45 wild-type GISTs were identified, 20 of which tumors did not have BRAF or NF1 genes mutations, and tissue samples were available for IHC study. The expression of succinate dehydrogenase subunit B (SDHB) was analyzed using monoclonal antibodies (clone EP288, Epitomics, 1:2000).
Results. Disorder of SDHB expression is a marker of inactivation of the SDH complex function. A study of 20 wild-type GISTs revealed 13 tumors with SDHB deficiency. The median age was 32 years. Women prevailed, four patients having an incomplete Carney triad. The tumor was localized in the stomach in all patients. Multicentric lesions were found in four cases. The average size of the primary tumor was 8.1 cm. Most of the patients were treated for symptoms of gastrointestinal bleeding and pain syndrome. In five cases, the spindle-cell structure of cells was observed, in two cases ― epithelioid-cell structure, and in six cases- mixed structure. In half of the GIST cases, more than 5 mitoses were observed in 50 visual fields (×400). More than half of the patients were found to have distant metastases. The 10-year survival rate of this group of patients is 82%.
Conclusions. SDH-deficient GISTs are a rare variety of wild type GIST characterized by a predominant incidence occurring among young women, selective localization in the stomach, and a high incidence of regional lymph node metastases. In half of the cases, patients suffered from distant metastases in the peritoneum and liver it the time of diagnosis.
References
Miettinen M, Lasota J. Gastrointestinal stromal tumors definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis // Virchows Arch. 2001;438:1. doi:10.1007/s004280000338
Lasota J, Miettinen M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours // Histopathology. 2008;53:245–266. doi:10.1111/j.1365-2559.2008.02977
Kinoshita K, Hirota S, Isozaki K et al. Absence of c-KIT gene mutations in gastrointestinal stromal tumors from neurofibromatosis type 1 patients // J. Pathol. 2004;202:80–85. doi:10.1002/path.1487
Miranda C, Nucifora M, Molinari F et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors // Clin. Cancer Res. 2012;18:1769–1776. doi:10.1158/1078-0432.CCR-11-2230
Lasota J, Felisiak-Golabek A, Wasag B et al. Frequency and clinicopathologic profile of PIK3CA mutant GISTs: molecular genetic study of 529 cases // Mod. Pathol. 2016;29:275–82. doi:10.1038/modpathol.2015.160
Weldon CB, Madenci AL, Boikos SA. Surgical Management of Wild-Type Gastrointestinal Stromal Tumors: A Report From the National Institutes of Health Pediatric and Wild-type GIST // J. Clin. Oncol. 2016.686733. doi:10.1200/JCO.2016.68.6733
Settas N, Faucz FR, Stratakis CA. Succinate dehydrogenase (SDH) deficiency, Carney triad and the epigenome // Mol. Cell. Endocrinol. 2018;469:107–111. doi:10.1016/j.mce.2017.07.018
Pitsava G, Settas N, Faucz F, Stratakis C. Carney Triad, Carney―Stratakis Syndrome, 3PAS and Other Tumors Due to SDH Deficiency // Frontiers In Endocrinology. 2021;12. doi:10.3389/fendo.2021.680609
Gill AJ. Succinate dehydrogenase (SDH)-deficient neoplasia // Histopathology. 2018;72:106–116. doi:10.1111/his.13277
Gill AJ. Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia // Pathology. 2012;44:285–292. doi:10.1097/PAT.0b013e3283539932
Covello KL, Simon MC. HIFs, hypoxia, and vascular development // Curr. Top. Dev. Biol. 2004;62:37–54. doi:10.1016/S0070-2153(04)62002-3
Belinsky MG, Rink L, Cai KQ et al. The insulin-like growth factor system as a potential therapeutic target in gastrointestinal stromal tumors // Cell Cycle (Georget. Tex.) 2008;7:2949–2955. doi:10.4161/cc.7.19.6760
Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression // J. Natl. Cancer Inst. 2000;92:1472–1489. doi:10.1093/jnci/92.18.1472
Gill AJ, Chou A, Vilain R et al. Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types // Am. J. Surg. Pathol. 2010;34:636–644. doi:10.1097/PAS.0b013e3181d6150d
Miettinen M, Wang ZF, Sarlomo-Rikala M et al. Succinate dehydrogenase-deficient gists: A clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age // Am. J. Surg. Pathol. 2011;35:1712–1721. doi:10.1097/PAS.0b013e3182260752
WHO Classification of Tumours Editorial Board. Digestive system tumours. IARC; Lyon, 2019.
Joensuu H, Hohenberger P, Corless CL. Gastrointestinal stromal tumour // Lancet 2013;382:973. doi:10.1016/S0140-6736(13)60106-3
Ondrej D, Monika S, Magdalena D et al. KIT mutations and sequence changes in genes encoding SDH complex possibly need not be mutually exclusive in gastrointestinal stromal tumors // Appl. Immunohistochem Mol. Morphol. 2012;20:523–524. doi:10.1097/PAI.0b013e3182494026
Miettinen M, Lasota J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs) ― a review // Int. J. Biochem. Cell biol. 2014;53:514–519. doi:10.1016/j.biocel.2014.05.033
Mason EF, Hornick JL. Conventional risk stratification fails to predict progression of succinate dehydrogenase-deficient gastrointestinal stromal tumors: A clinicopathologic study of 76 cases // Am. J. Surg. Pathol. 2016;40:1616–1621. doi:10.1097/PAS.0000000000000685
Stratakis CA, Carney JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (carney-stratakis syndrome): Molecular genetics and clinical implications // J. Intern. Med. 2009;266:43–52. doi:10.1111/j.1365-2796.2009.02110
Carney J. Gastric Stromal Sarcoma, Pulmonary Chondroma, and Extra-adrenal Paraganglioma (Carney Triad): Natural History, Adrenocortical Component, and Possible Familial Occurrence // Mayo Clinic Proceedings. 1999;74(6):543–552. doi:10.4065/74.6.543
Haller F, Moskalev EA, Faucz FR et al. Aberrant DNA hypermethylation of SDHC: A novel mechanism of tumor development in carney triad // Endocr. Relat. Cancer. 2014;21:567–577. doi:10.1530/ERC-14-0254
Carney JA, Stratakis CA. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad // Am. J. Med. Genet. 2002;108:132–139. doi:10.1002/ajmg.10235
Szucs Z, Thway K, Fisher C et al. Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications // Future Oncol. 2017;13(1):93–107. doi:10.2217/fon-2016-0192
Miettinen M, Lasota J, Sobin LH. Gastrointestinal stromal tumors of the stomach in children and young adults: a clinicopathologic, immunohistochemical, and molecular genetic study of 44 cases with long-term follow-up and review of the literature // Am. J. Surg. Pathol. 2005;29:1373–81. doi:10.1097/01.pas.0000172190.79552.8b
Agaram NP, Laquaglia MP, Ustun B et al. Molecular characterization of pediatric gastrointestinal stromal tumors // Clin. Cancer Res. 2008;14:3204–15. doi:10.1158/1078-0432.CCR-07-1984
Prakash S, Sarran L, Socci N et al. Gastrointestinal stromal tumors in children and young adults: a clinicopathologic, molecular, and genomic study of 15 cases and review of the literature // J. Pediatr. Hematol. Oncol. 2005;27:179–87. doi:10.1097/01.mph.0000157790.81329.47
Benesch M, Leuschner I, Wardelmann E et al. Gastrointestinal stromal tumours in children and young adults: a clinicopathologic series with long-term follow-up from the database of the Cooperative Weichteilsarkom Studiengruppe. (CWS) // Eur. J. Cancer. 2011;47:1692–8. doi:10.1016/j.ejca.2011.03.014
Mei L, Smith SC, Faber AC et al. Gastrointestinal stromal tumors: the GIST of precision medicine // Trends Cancer. 2018;4(1):74–91. doi:10.1016/j.trecan.2017.11.006
Boikos SA, Pappo AS, Killian JK et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the national institutes of health gastrointestinal stromal tumor clinic // JAMA Oncol. 2016;2(7):922–928. doi:10.1001/jamaoncol.2016.0256
Ben-Ami E, Barysauskas CM, von Mehren M et al. Long-term follow-up results of the multicenter phase II trial of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of standard tyrosine kinase inhibitor therapy // Ann. Oncol. 2016;27(9):1794–1799. doi:10.1093/annonc/mdw228
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2022