Carcinogenic Risk in the Offspring of Preconceptionally Irradiated Mammals: A Systematic Review
##article.numberofdownloads## 8
##article.numberofviews## 41
pdf (Русский)

Keywords

carcinogenesis
tumor
transgenerational carcinogenesis
irradiation
ionizing radiation

How to Cite

Panchenko , A. V., Popovich , I. G., Fedoros , E. I., & Pigarev, S. E. (2025). Carcinogenic Risk in the Offspring of Preconceptionally Irradiated Mammals: A Systematic Review. Voprosy Onkologii, 71(2), OF–2193. https://doi.org/10.37469/0507-3758-2025-71-2-OF-2193

Abstract

Introduction. The phenomenon of transgenerational effects of ionizing radiation has been studied for several decades. One of the possible consequences of parental irradiation may be an affected frequency and spectrum of malignant neoplasms in the offspring. A small number of experimental and epidemiological studies have been published on this subject. The aim of this review was to determine the effect of pre-conceptional paternal and maternal irradiation on the development of tumor pathology in offspring.

Materials and methods. A search was performed in the PubMed and eLIBRARY.RU databases without date restrictions using the terms: "transgenerational carcinogenesis", "radiation carcinogenesis" in eLIBRARY.RU and "transgeneration" AND "irradiation" in PubMed, yielding a total of 236 records. After an initial review of titles and abstracts, 161 were excluded. A total of 75 studies were selected for detailed analysis, of which 63 were excluded according to the criteria, including 1 study with duplicate results and 22 review publications. An additional search of the reference lists of the reviews was conducted and a further 18 eligible publications were identified. A total of 30 publications were subjected to a systematic review.

Results. In general, studies of morbidity in the offspring of irradiated humans have shown no significant health risks. However, experiments in mice suggest an increased risk of carcinogenesis in the offspring of irradiated animals, both spontaneous and induced by an additional hit.

Conclusion. Overall, the epidemiological data in humans and the experimental data in mice do not exclude the possibility that germ line exposure to ionising radiation may cause weak direct oncogenic effects and may also be associated with hypersensitivity of the offspring to subsequent postnatal carcinogenic exposure.

https://doi.org/10.37469/0507-3758-2025-71-2-OF-2193
##article.numberofdownloads## 8
##article.numberofviews## 41
pdf (Русский)

References

Preston-Martin S. Epidemiological studies of perinatal carcinogenesis, IARC Sci Publ. 1989: (96): 289–314.-URL: https://pubmed.ncbi.nlm.nih.gov/2680950/.

Gardner M.J., Snee M.P., Hall A.J., et al. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. BMJ. 1990; 300(6722): 423–429.-DOI: 10.1136/bmj.300.6722.423.-URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC1662259/.

Evans H.J. Problems and paradigms: Ionising radiations from nuclear establishments and childhood leukaemias — an enigma. BioEssays. 1990; 12(11): 541–549.-DOI: 10.1002/bies.950121108.-URL: https://pubmed.ncbi.nlm.nih.gov/2085321/.

Kinlen L.J., Clarke K., Balkwill A. Paternal preconceptional radiation exposure in the nuclear industry and leukaemia and non-Hodgkin’s lymphoma in young people in Scotland. BMJ. 1993; 306(6886): 1153–1158.-DOI: 10.1136/bmj.306.6886.1153.-URL: https://pubmed.ncbi.nlm.nih.gov/8499814/.

McLaughlin J.R., King W.D., Anderson T.W., et al. Paternal radiation exposure and leukaemia in offspring: the Ontario case-control study. BMJ. 1993; 307(6910): 959–966.-DOI: 10.1136/bmj.307.6910.959.-URL: https://pubmed.ncbi.nlm.nih.gov/8241906/.

Draper G.J., Little M.P., Sorahan T., et al. Cancer in the offspring of radiation workers: a record linkage study. BMJ. 1997; 315(7117): 1181–1188.-URL: https://pubmed.ncbi.nlm.nih.gov/9393219/.

Wakeford R. Study of childhood cancer and paternal preconceptional irradiation at USA nuclear facilities. J Radiol Prot. 2000; 20(3): 331–332.-DOI: 10.1088/0952-4746/20/3/603.-URL: https://pubmed.ncbi.nlm.nih.gov/11008940/.

Boice J.D., Tawn E.J., Winther J.F., et al. Genetic effects of radiotherapy for childhood cancer. Health Phys. 2003; 85(1): 65-80.-DOI: 10.1097/00004032-200307000-00013.-URL: https://pubmed.ncbi.nlm.nih.gov/12852473/.

Wakeford R. The risk of childhood leukaemia following exposure to ionising radiation — a review. J Radiol Prot. 2013; 33(1): 1-25.-DOI: 10.1088/0952-4746/33/1/1.-URL: https://pubmed.ncbi.nlm.nih.gov/23296257/.

Nomura T. Parental exposure to X rays and chemicals induces heritable tumours and anomalies in mice. Nature. 1982; 296(5857): 575-577.-DOI: 10.1038/296575a0.-URL: https://pubmed.ncbi.nlm.nih.gov/7200193/.

Vorobtsova I.E., Kitaev E.M. Urethane-induced lung adenomas in the first-generation progeny of irradiated male mice. Carcinogenesis. 1988; 9(11): 1931-1934.-DOI: 10.1093/carcin/9.11.1931.-URL: https://pubmed.ncbi.nlm.nih.gov/3180332/.

Cattanach B.M., Patrick G., Papworth D., et al. Investigation of lung tumour induction in BALB/cJ mice following paternal X-irradiation. Int J Radiat Biol. 1995; 67(5): 607-615.-DOI: 10.1080/09553009514550721.-URL: https://pubmed.ncbi.nlm.nih.gov/7775836/.

Vorobtsova I.E., Aliyakparova L.M., Anisimov V.N. Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat Res Mol Mech Mutagen. 1993; 287(2); 207-216.-DOI: 10.1016/0027-5107(93)90013-6.-URL: https://pubmed.ncbi.nlm.nih.gov/7685480/.

Cattanach B.M., Papworth D., Patrick G., et al. Investigation of lung tumour induction in C3HHeH mice, with and without tumour promotion with urethane, following paternal X-irradiation. Mutat Res Mol Mech Mutagen. 1998; 403(97): 1-12.-DOI: 10.1016/S0027-5107(97)00322-9.-URL: https://pubmed.ncbi.nlm.nih.gov/9726000/.

Mohr U., Dasenbrock C., Tillmann T., et al. Possible carcinogenic effects of X-rays in a transgenerational study with CBA mice. Carcinogenesis. 1999; 20(2); 325-332.-DOI: 10.1093/carcin/20.2.325.-URL: https://pubmed.ncbi.nlm.nih.gov/10069472/.

Dasenbrock C., Tillmann T., Ernst H., et al. Maternal effects and cancer risk in the progeny of mice exposed to X-rays before conception. Exp Toxicol Pathol. 2005; 56(6): 351-360.-DOI: 10.1016/j.etp.2004.12.001.-URL: https://pubmed.ncbi.nlm.nih.gov/15945274/.

Paris L., Giardullo P., Leonardi S., et al. Transgenerational inheritance of enhanced susceptibility to radiation-induced medulloblastoma in newborn Ptch1+/− mice after paternal irradiation. Oncotarget. 2015; 6(34); 36098-36112.-DOI: 10.18632/oncotarget.5553.-URL: https://pubmed.ncbi.nlm.nih.gov/26452034/.

Suman S., Kumar S., Moon B.-H., et al. Increased transgenerational intestinal tumorigenesis in offspring of ionizing radiation exposed parent APC 1638N/+ mice. J Cancer. 2017; 8(10): 1769-1773.-DOI: 10.7150/jca.17803.-URL: https://pubmed.ncbi.nlm.nih.gov/28819373/.

Панченко А.В., Пигарев С.Е., Федорос Е.И., et al. Трансгенерационный канцерогенез, индуцированный уретаном, у потомков мышей-самцов BALB/c, подвергнутых общему равномерному гамма-облучению. Вопросы онкологии. 2023; 69(2); 246-252.-DOI: 10.37469/0507-3758-2023-69-2-246-252.-URL: https://elibrary.ru/item.asp?id = 52455507.

[Panchenko A.V., Pigarev S.E., Fedoros E.I., et al. Urethane-induced transgenerational carcinogenesis in the offsprings of BALB/c male mice exposed to total body gamma irradiation. Voprosy Oncologii = Problems in Oncology. 2023; 69(2)2: 46-252.-DOI: 10.37469/0507-3758-2023-69-2-246-252.-URL: https://elibrary.ru/item.asp?id = 52455507 (in Rus)].

Lord B., Woolford L., Wang L., et al. Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br J Cancer. 1998; 78(3): 301-311.-DOI: 10.1038/bjc.1998.491.-URL: https://pubmed.ncbi.nlm.nih.gov/9703275/.

Hoyes K.P., Lord B.I., McCann C., et al. Transgenerational effects of preconception paternal contamination with 55Fe. Radiat Res. 2001; 156(5 Pt 1): 488-494.-DOI: 10.1667/0033-7587(2001)156[0488:TEOPPC]2.0.CO;2.-URL: https://pubmed.ncbi.nlm.nih.gov/11604061/.

Watanabe H., Toyoshima M., Ishikawa M., Kamiya K. Paternal monoenergetic neutron exposure results in abnormal sperm, and embryonal lethality and transgenerational tumorigenesis in mouse F1 offspring. Oncol Rep. 2010; 23(5): 1351-1360.-DOI: 10.3892/or_00000771.-URL: https://pubmed.ncbi.nlm.nih.gov/20372851/.

Yoshimoto Y., Neel J.V., Schull W.J., et al. Malignant tumors during the first 2 decades of life in the offspring of atomic bomb survivors. Am J Hum Genet. 1990; 46(6): 1041-1052.-URL: https://pubmed.ncbi.nlm.nih.gov/2160192/.

Izumi S., Suyama A., Koyama K. Radiationrelated mortality among offspring of atomic bomb survivors: A halfcentury of followup. Int J Cancer. 2003; 107(2): 292-297.-DOI: 10.1002/ijc.11400.-URL: https://pubmed.ncbi.nlm.nih.gov/12949810/.

Black D. Investigation of the possible increased incidence of cancer in West Cumbria. London (UK): HMSO. 1984; 104.-ISBN 0 11 321006 X;-URL: http://inis.iaea.org/search/search.aspx?orig_q=RN:15069846.

Gardner M.J. Paternal occupations of children with leukemia. BMJ. 1992; 305(6855): 715.-DOI: 10.1136/bmj.305.6855.715.-URL: https://pubmed.ncbi.nlm.nih.gov/1393138/.

McKinney P.A., Alexander F.E., Cartwright R.A., Parker L. Parental occupations of children with leukaemia in west Cumbria, north Humberside, and Gateshead. BMJ. 1991; 302(6778): 681-687.-DOI: 10.1136/bmj.302.6778.681.-URL: https://pubmed.ncbi.nlm.nih.gov/2021741/.

Alexander F., McKinney P., Moncrieff K., Cartwright R. Residential proximity of children with leukaemia and non-Hodgkin’s lymphoma in three areas of northern England. Br J Cancer. 1992; 65(4): 583-588.-DOI: 10.1038/bjc.1992.118.-URL: https://pubmed.ncbi.nlm.nih.gov/1562467/.

Alexander F.E., Cartwright R.A., McKinney P.A. Paternal occupations of children with leukemia. BMJ. 1992; 305(6855): 715-716.-DOI: 10.1136/bmj.305.6855.715-a.-URL: https://pubmed.ncbi.nlm.nih.gov/1393139/.

Urquhart J.D., Black R.J., Muirhead M.J., et al. Case-control study of leukaemia and non-Hodgkin’s lymphoma in children in Caithness near the Dounreay nuclear installation. BMJ. 1991; 302(6778): 687-692.-DOI: 10.1136/bmj.302.6778.687.-URL: https://pubmed.ncbi.nlm.nih.gov/2021742/.

Sorahan T., Lancashire R.J., Temperton D.H., Heighway W.P. Childhood cancer and paternal exposure to ionizing radiation: A second report from the oxford survey of childhood cancers. Am J Ind Med. 1995; 28(1): 71-78.-DOI: 10.1002/ajim.4700280106.-URL: https://pubmed.ncbi.nlm.nih.gov/7573076/.

Roman E., Doyle P., Maconochie N., et al. Cancer in children of nuclear industry employees: report on children aged under 25 years from nuclear industry family study. BMJ. 1999; 318(7196): 1443-1450.-DOI: 10.1136/bmj.318.7196.1443.-URL: https://pubmed.ncbi.nlm.nih.gov/10346768/.

Meinert R., Kaletsch U., Kaatsch P., et al. Associations between childhood cancer and ionizing radiation: results of a population-based case-control study in Germany. Cancer Epidemiol Biomarkers Prev. 1999; 8(9): 793-799.-URL: https://pubmed.ncbi.nlm.nih.gov/10498398/.

Johnson K.J., Alexander B.H., Doody M.M., et al. Childhood cancer in the offspring born in 1921-1984 to US radiologic technologists. Br J Cancer. 2008; 99(3): 545-550.-DOI: 10.1038/sj.bjc.6604516.-URL: https://pubmed.ncbi.nlm.nih.gov/18665174/.

Bunch K.J., Muirhead C.R., Draper G.J., et al. Cancer in the offspring of female radiation workers: a record linkage study. Br J Cancer. 2009; 100(1): 213-218.-DOI: 10.1038/sj.bjc.6604841.-URL: https://pubmed.ncbi.nlm.nih.gov/19127273/.

Балева Л.С., Сипягина А.Е., Карахан Н.М. Состояние здоровья детского населения России, подвергшегося радиационному воздействию вследствие аварии на ЧАЭС. Итоги 29-летнего наблюдения Детского научно-практического центра противорадиационной защиты. Российский вестник перинатологии и педиатрии. 2015; 60(4): 6-10.-URL: https://elibrary.ru/item.asp?id = 24336881.

[Baleva L.S., Sipyagina A.E., Karakhan N.M. The health status of the russian pediatric population exposed to radiation from the chernobyl accident: results of a 29-year follow-up of the children’s research and practical center for anti-radiation protection. Ros. Vestn. Perinatol. Pediat. = Russian Bulletin of Perinatology and Pediatrics. 2015; 60(4): 6-10.-URL: https://elibrary.ru/item.asp?id = 24336881 (in Rus)].

Балева Л.С., Карахан Н.М., Данилычева Л.И., Якушева Е.Н. Риски возникновения онкологических заболеваний в поколениях детей, подвергшихся воздействию радиационного фактора в результате аварии на ЧАЭС. В кн.: Гаевская А.В. (Ред.). Сборник материалов всероссийской научно-практической конференции с международным участием приуроченной к 145-летию севастопольской биологической станции. 19–24 сентября 2016 г.: в 3 томах. Т. 3. Севастополь: ЭКОСИ-Гидрофизика; 2016: 21-24.-URL: https://elibrary.ru/item.asp?id = 27547379.

[Baleva L.S., Karahan N.M., Danilycheva L.I., Yakusheva E.N. Risks of oncological diseases in generations of children exposed to radiation as a result of the Chernobyl accident. In: Gaevskaya A.V. (Ed.). Collection of materials of the All-Russian scientific-practical conference with international participation dedicated to the 145th anniversary of the Sevastopol Biological Station. 19-24 September 2016: in 3 volumes. Т. 3. Sevastopol: ECOSI- Gidrofizika; 2016: 21-24.-URL: https://elibrary.ru/item.asp?id = 27547379 (in Rus)].

Воробцова И.Е. Трансгенерационная передача радиационно-индуцированной нестабильности генома и предрасположенности к канцерогенезу. Вопросы онкологии. 2008; 54(4): 490–493.-URL: https://elibrary.ru/item.asp?id = 11685941.

[Vorobtsova I.E. Transgenerational transmission of radiation-induced genomic instability and predisposition to carcinogenesis. Vopr. Onkol. 2008; 54(4): 490-493.-URL: https://pubmed.ncbi.nlm.nih.gov/18942406/ (in Rus)].

Nomura T., Baleva L., Ryo H., et al. Transgenerational effects of radiation on cancer and other disorders in mice and humans. J Radiat Cancer Res. 2017; 8(3): 123-134.-DOI: 10.4103/jrcr.jrcr_30_17.-URL: https://journals.lww.com/jrcr/fulltext/2017/08030/transgenerational_effects_of_radiation_on_cancer.2.aspx.

Dubrova Y.E., Sarapultseva E.I. Radiation-induced transgenerational effects in animals. Int J Radiat Biol. 2022; 98(6): 1047-1053.-DOI: 10.1080/09553002.2020.1793027.-URL: https://pubmed.ncbi.nlm.nih.gov/32658553/.

Mughal S.K., Myazin A.E., Zhavoronkov L.P., et al. The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection. PLoS ONE. 2012; 7(7): e41300.-DOI: 10.1371/journal.pone.0041300.-URL: https://pubmed.ncbi.nlm.nih.gov/22911775/.

Selby P.B., Earhart V.S., Raymer G.D. The influence of dominant lethal mutations on litter size and body weight and the consequent impact on transgenerational carcinogenesis. Mutat Res Mol Mech Mutagen. 2005; 578(1-2): 382-394.-DOI: 10.1016/j.mrfmmm.2005.06.025.-URL: https://pubmed.ncbi.nlm.nih.gov/16157353/.

Lassi Z.S., Imam A.M., Dean S.V., Bhutta Z.A. Preconception care: caffeine, smoking, alcohol, drugs and other environmental chemical/radiation exposure. Reprod Health. 2014; 11 Suppl 3(Suppl 3): S6.-DOI: 10.1186/1742-4755-11-S3-S6.-URL: https://pubmed.ncbi.nlm.nih.gov/25415846/.

Балева Л.С., Сухоруков В.С., Сипягина А.Е., et al. Роль геномной нестабильности и экспрессии генной сети белка р53 в процессах онкогенеза в 1–2-м поколении детей, проживающих на радиационно загрязненных территориях. Российский вестник перинатологии и педиатрии. 2017; 62(1): 81-86.-URL: https://elibrary.ru/item.asp?id = 29114777.

[Baleva L.S., Sukhorukov V.S., Sipyagina A.E., et al. The role of genomic instability and expression of the p53 protein gene network in the processes of oncogenesis in firstand second-generation children living in radioactively contaminated areas. Ros. Vestn. Perinatol. Pediat. = Russian Bulletin of Perinatology and Pediatrics. 2017; 62(1): 81-86.-URL: https://elibrary.ru/item.asp?id = 29114777 (In Rus)].

Baulch J.E., Raabe O.G., Wiley L.M. Heritable effects of paternal irradiation in mice on signaling protein kinase activities in F3 offspring. Mutagenesis. 2001; 16(1): 17-23.-DOI: 10.1093/mutage/16.1.17.-URL: https://pubmed.ncbi.nlm.nih.gov/11139595/.

The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007; 37(2-4): 1-332.-DOI: 10.1016/j.icrp.2007.10.003.-URL: https://pubmed.ncbi.nlm.nih.gov/18082557/.

Воробцова И.Е. Трансгенерационная передача радиационно-индуцированной нестабильности генома. Радиационная биология. Радиоэкология. 2006; 46(4): 441-446.-URL: https://elibrary.ru/item.asp?id = 17305861.

[Vorobtsova I.E. Transgenerational transmission of radiation induced genomic instability. Radiation Biology. Radioecology. = Radiacionnaja Biologija. Radiojekologija. 2006; 46(4): 441-446.-URL: https://elibrary.ru/item.asp?id = 17305861 (in Rus)].

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025