Mechanisms of Formation of Specific Antitumor Immunity and Resistance to Immune Checkpoint Inhibitors
pdf (Русский)

Keywords

antitumor immunity
checkpoint inhibitors
T cell receptor
V(D)J DNA recombination
TREC
KREC

How to Cite

Sultanbaev, A. V., Tuzankina, I. A., Nasretdinov, A. F., Sultanbaeva, N. I., Musin, S. I., Menshikov, K. V., Sultanbaev, M. V., Satyshev, O. V., Izmailov, A. A., Kudlay, D. A., & Imyanitov, E. N. (2024). Mechanisms of Formation of Specific Antitumor Immunity and Resistance to Immune Checkpoint Inhibitors. Voprosy Onkologii, 70(3), 433–439. https://doi.org/10.37469/0507-3758-2024-70-3-433-439

Abstract

This review is dedicated to the mechanisms of antitumor immunity and to the features of its formation.

Immune checkpoint inhibitors have changed the treatment paradigm for cancer patients. Immunotherapy has shown superior efficacy to standard chemotherapy in many malignant neoplasms. This paper reviews literature data on the mechanisms of specific anti-tumour immunity and resistance of malignant neoplasms (MN) to immune checkpoint inhibitors. The following markers are widely used to determine the efficacy of checkpoint inhibitors in clinical practice PD-L1 status and microsatellite instability. Research shows that the level of PD-L1 expression determines the effectiveness of immunotherapy. The presence of high microsatellite instability determines sensitivity to ICT therapy regardless of histological subtype. The presence of PD-L1 and MSI status is an indication for the prescription of PD1 and PD-L1 immune checkpoint blockers. Even in the presence of MSI and high expression of PD-L1, a certain group of patients do not respond to therapy, indicating resistance and a lack of specific antitumor immunity. V(D)J DNA recombinations ensure the production of different antigen receptors in developing T and B lymphocytes, which appears to be a key factor in the development of specific antitumor immunity. TREC and KREC metrics should be considered to determine the efficacy of immunotherapy.

https://doi.org/10.37469/0507-3758-2024-70-3-433-439
pdf (Русский)

References

Amodio V., Mauri G., Reilly N.M., et al. Mechanisms of immune escape and resistance to checkpoint inhibitor therapies in mismatch repair deficient metastatic colorectal cancers. Сancers. 2021; 13(11): 2638.-DOI: https://doi.org/10.3390/cancers13112638.

Schmid P., Rugo H.S., Adams S., et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020; 21(1): 44-59.-DOI: https://doi.org/10.1016/S1470-2045(19)30689-8.

Michielin O., van Akkooi A., Ascierto P., et al. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019; 30(12).-DOI: https://doi.org/10.1093/annonc/mdz411.

Planchard D., Popat S., Kerr K., et al. Correction to: «Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.». Ann Oncol. 2019; 30(5): 863-70.-DOI: https://doi.org/10.1093/annonc/mdy474.

Chung H.C., Ros W., Delord J.P., et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019; 37(17): 1470-8.-DOI: https://doi.org/10.1200/JCO.18.01265.

Stratigos A.J., Sekulic A., Peris K., et al. Cemiplimab in locally advanced basal cell carcinoma after hedgehog inhibitor therapy: an open-label, multi-centre, single-arm, phase 2 trial. Lancet Oncol. 2021; 22(6): 848-57.-DOI: https://doi.org/10.1016/S1470-2045(21)00126-1.

Saada-Bouzid E., Peyrade F., Guigay J. Immunotherapy in recurrent and or metastatic squamous cell carcinoma of the head and neck. Current Opinion in Oncology. 2019; 31(3): 146-51.-DOI: https://doi.org/10.1097/CCO.0000000000000522.

Herbst R.S., Arkenau H.T., Santana-Davila R., et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): a multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol. 2019; 20(8): 1109-23.-DOI: https://doi.org/10.1016/S1470-2045(19)30458-9.

Robert C., Long G.V., Brady B., et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015; 372(4): 320-30.-DOI: https://doi.org/10.1056/NEJMoa1412082.

Hodi F.S., O’Day S.J., McDermott D.F., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363(8): 711-23.-DOI: https://doi.org/10.1056/NEJMoa1003466.

van Dijk N., Gil-Jimenez A., Silina K., et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nature Medicine. 2020; 26(12): 1839-44.-DOI: https://doi.org/10.1038/s41591-020-1085-z.

Robert C., Schachter J., Long G.V., et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015; 372(26): 2521-32.-DOI: https://doi.org/10.1056/NEJMoa1503093.

Wolchok J.D., Chiarion-Sileni V., Gonzalez R., et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017; 377(14): 1345-56.-DOI: https://doi.org/10.1056/NEJMoa1709684.

Weber J., Mandala M., Del Vecchio M., et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017; 377(19): 1824-35.-DOI: https://doi.org/10.1056/NEJMoa1709030.

Eggermont A.M.M., Blank C.U., Mandala M., et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018; 378(19): 1789-801.-DOI: https://doi.org/10.1056/NEJMoa1802357.

Tjulandin S., Demidov L., Moiseyenko V., et al. Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. European Journal of Cancer (Oxford, England: 1990). 2021; 149: 222-32.-DOI: https://doi.org/10.1016/j.ejca.2021.02.030.

Torre L.A., Siegel R.L., Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2015; 1-19.-DOI: https://doi.org/10.1007/978-3-319-24223-1_1.

Lahiri A., Maji A., Potdar P.D., et al. Lung cancer immunotherapy: progress, pitfalls, and promises. Molecular Cancer. 2023; 22(1).-DOI: https://doi.org/10.1186/s12943-023-01740-y.

Taube J.M., Klein A., Brahmer J.R., et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014; 20(19): 5064-74.-DOI: https://doi.org/10.1158/1078-0432.CCR-13-3271.

Ott P.A., Bang Y.J., Piha-Paul S.A., et al. T-cell–inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019; 37(4): 318-27.- DOI: https://doi.org/10.1200/JCO.2018.78.2276

Gao C., Li X., Ji Y., et al. CTLA-4 regulates T follicular regulatory cell differentiation and participates in intestinal damage caused by spontaneous autoimmunity. Biochem Biophys Res Commun. 2018; 505(3): 865-71.-DOI: https://doi.org/10.1016/j.bbrc.2018.09.182.

Zhao P., Li L., Jiang X., Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. Journal of Hematology & Oncology. 2019; 12(1).-DOI: https://doi.org/10.1186/s13045-019-0738-1.

Le D.T., Uram J.N., Wang H., et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015; 372(26): 2509-20.-DOI: https://doi.org/10.1056/NEJMoa1500596.

Marcus L., Lemery S.J., Keegan P., Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019; 25(13): 3753-8.-DOI: https://doi.org/10.1158/1078-0432.CCR-18-4070.

Taube J.M., Klein A., Brahmer J.R., et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to Anti-PD-1 therapy. Clin Cancer Res. 2014; 20(19): 5064-74.-DOI: https://doi.org/10.1158/1078-0432.CCR-13-3271.

Cristescu R., Mogg R., Ayers M., et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science. 2018; 362(6411): eaar3593.-DOI: https://doi.org/10.1126/science.aax1384.

Bagchi S., Yuan R., Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021; 16(1): 223-49.-DOI: https://doi.org/10.1146/annurev-pathol-042020-042741.

Morad G., Helmink B.A., Sharma P., Wargo J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021; 184(21): 5309-37.-DOI: https://doi.org/10.1016/j.cell.2021.09.020.

Seto T., Sam D., Pan M. Mechanisms of primary and secondary resistance to immune checkpoint inhibitors in cancer. Medical Sciences. 2019; 7(2): 14.-DOI: https://doi.org/10.3390/medsci7020014.

Султанбаев А.В., Мусин Ш.И., Меньшиков К.В., et al. Роль хромосомных V(D)J рекомбинаций лимфоцитов в формировании противоопухолевого иммунитета и эффективности применения иммунотерапии. Молекулярная медицина. 2023; 21(4): 11-19.-DOI: https://doi.org/10.29296/24999490-2023-04-02. [Sultanbaev A.V., Musin Sh.I., Menshikov K.V., et al. The role of chromosomal V(D)J recombinations of lymphocytes in the formation of antitumor immunity and the effectiveness of immunotherapy. Molecular Medicine. 2023; 21(4): 11-19.-DOI: https://doi.org/10.29296/24999490-2023-04-02. (In Rus)].

Serana F., Chiarini M., Zanotti C., et al. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J Transl Med. 2013; 11(1): 119.-DOI: https://doi.org/10.1186/1479-5876-11-119.

Toubert A., Glauzy S., Douay C., Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012; 79(2): 83-9.-DOI: https://doi.org/10.1111/j.1399-0039.2011.01820.x.

Velardi E., Clave E., Arruda L.C.M., et al. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Seminars in Immunopathology. 2021; 43(1): 101-17.-DOI: https://doi.org/10.1007/s00281-020-00828-7.

Mensen A., Ochs C., Stroux A., et al. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J Transl Med. 2013; 11(1).-DOI: https://doi.org/10.1186/1479-5876-11-188.

Negative selection of lymphocytes. Cell. 1994; 76(2): 229-39.-DOI: https://doi.org/10.1016/0092-8674(94)90331-x.

Fry A.M., Jones L.A., Kruisbeek A.M., Matis L.A. Thymic requirement for clonal deletion during T cell development. Science (New York, NY). 1989; 246(4933): 1044-6.-DOI: https://doi.org/10.1126/science.2511630.

Hodes R.J., Sharrow S.O., Solomon A. Failure of T cell receptor V beta negative selection in an athymic environment. Science (New York, NY). 1989; 246(4933): 1041-4.-DOI: https://doi.org/10.1126/science.2587987.

Ghia P., ten Boekel E., Rolink A.G., Melchers F. B-cell development: a comparison between mouse and man. Immunol Today. 1998; 19(10): 480-5.-DOI: https://doi.org/10.1016/s0167-5699(98)01330-9.

Dik W.A., Pike-Overzet K., Floor Weerkamp, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med. 2005; 201(11): 1715-23.-DOI: https://doi.org/10.1084/jem.20042524.

Kwok J.S.Y., Cheung S.K.F., Ho J.C.Y., et al. Establishing Simultaneous T cell receptor excision circles (TREC) and K-deleting recombination excision circles (KREC) quantification assays and laboratory reference intervals in healthy individuals of different age groups in Hong Kong. Frontiers in Immunology. 2020; 11.-DOI: https://doi.org/10.3389/fimmu.2020.01411.

Образцов И.В., Гордукова М.А., Цветкова Е.В., et al. Эксцизионные кольца V(D)J рекомбинации B- и T-клеток как показатели иммунологической реконституции у детей с острым лимфобластным лейкозом. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016; 15(4): 42-50.-DOI: https://doi.org/10.24287/1726-1708-2016-15-4-42-50. [Obraztsov I.V., Gordukova M.A., Tsvetkova E.V., et al. V(D)J excision rings of B- and T-cell recombination as indicators of immunological reconstitution in children with acute lymphoblastic leukemia. Issues of Hematology/Oncology and Immunopathology in Pediatrics. 2016; 15(4): 42-50.-DOI: https://doi.org/10.24287/1726-1708-2016-15-4-42-50. (In Rus)].

Sultanbaev A.V., Musin S., Menshikov K., et al. 99P Quantitative indicators of TREC and KREC excision rings in malignant neoplasms. ESMO Open. 2023; 8(1): 100957.-DOI: https://doi.org/10.1016/j.esmoop.2023.100957.

Hoolehan W., Harris J.C., Byrum J.N., et al. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res. 2022.-DOI: https://doi.org/10.1093/nar/gkac1038.

Корсунский И.А., Кудлай Д.А., Продеус А.П., et al. Неонатальный скрининг на первичные иммунодефицитные состояния и Т-/В-клеточные лимфопении как основа формирования групп риска детей с врожденными патологиями. Педиатрия им. Г.Н. Сперанского. 2020; 99(2): 8-15.-DOI: https://doi.org/10.24110/0031-403X-2020-99-2-8-15I.A. [Korsunsky I.A., Kudlay D.A., Prodeus A.P., et al. Neonatal screening for primary immunodeficiency conditions and T-/B-cell lymphopenia as the basis for the formation of risk groups for children with congenital pathologies. Pediatrics Journal named after G.N. Speransky. 2020; 99(2): 8-15.-DOI: https://doi.org/10.24110/0031-403X-2020-99-2-8-15I.A. (In Rus)].

Козлов В.А., Тихонова Е.П., Савченко А.А., et al. Клиническая иммунология. Практическое пособие для инфекционистов. Красноярск: Поликор. 2021; 563.-DOI: https://doi.org/10.17513/np.518. [Kozlov V.A., Tikhonova E.P., Savchenko A.A., et al. Clinical immunology. A practical guide for infectious disease specialists. Krasnoyarsk: Polikor. 2021; 563.-DOI: https://doi.org/10.17513/np.518. (In Rus)].

Ru H., Zhang P., Wu H. Structural gymnastics of RAG-mediated DNA cleavage in V(D)J recombination. Curr Opin Struct Biol. 2018; 53: 178-86.-DOI: https://doi.org/10.1016/j.sbi.2018.11.001.

Wu G.S., Bassing C.H. Inefficient V(D)J recombination underlies monogenic T cell receptor β expression. Proceedings of the National Academy of Sciences. 2020; 117(31): 18172-4.-DOI: https://doi.org/10.1073/pnas.2010077117.

Garon E.B., Rizvi N.A., Hui R., et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N Engl J Med. 2015; 372(21): 2018-28.-DOI: https://doi.org/10.1056/NEJMoa1501824.

Daud A.I., Wolchok J.D., Robert C., et al. Programmed death-ligand 1 expression and response to the anti–programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 2016; 34(34): 4102-9.-DOI: https://doi.org/10.1200/JCO.2016.67.2477.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024