Abstract
Introduction. Immunotherapy has demonstrated high efficacy in the treatment of melanoma, particularly with the advent of immune checkpoint inhibitors (ICIs). However, systemic immune activation often triggers severe immune-related adverse events (irAEs) that can substantially compromise patient quality of life — a critical concern in adjuvant settings where extended treatment durations are required. In this context, the development of novel, safer, and more targeted immunotherapeutic strategies for melanoma is of paramount importance.
Aim. To evaluate the efficacy and safety of an autologous dendritic cell vaccine (DCV) CaTeVac in melanoma patients, assessing its performance both as adjuvant therapy and standalone treatment in comparison with conventional therapeutic approaches.
Materials and Methods. The study enrolled 154 patients with histologically confirmed melanoma who received DCV treatment between 2009 and 2023. Patients were treated in adjuvant (76 %) or therapeutic (24 %) settings. Adjuvant therapy was administered following complete cytoreduction in stage II–IV patients with high recurrence risk. Therapeutic DCV was reserved for patients with measurable disease who had exhausted standard treatment options. The endpoints included overall survival (OS), progression-free survival (PFS), and the frequency and severity of adverse events, evaluated in comparison with a historical control group.
Results. In the adjuvant setting, administration of the CaTeVac DCV led to a statistically significant improvement in median PFS (15.0 vs. 8.6 months in controls (p < 0.02). The median OS in the CaTeVac cohort remained unreached after more than 10 years of follow-up vs. 52.5 months for controls (p = 0.01). For patients receiving standalone treatment, CaTeVac showed modest but statistically superior PFS versus monochemotherapy (2.5 vs. 2.3 months; p < 0.05), though no significant OS difference was observed (12.4 vs. 11.4 months; p > 0.05). The safety profile of CaTeVac was favorable, with 64 % of treatment cycles being adverse event-free. Fever occurred in 45.1 % of the therapy cycles: grade 1 (40.8 %), 2 (4 %), and 3 (0.3 %). Pain, allergic reactions, local reactions, and laboratory abnormalities each occurred in < 5 % of cycles.
Conclusion. The CaTeVac dendritic cell vaccine demonstrates both clinical efficacy and an excellent safety profile, establishing it as a promising therapeutic option for adjuvant melanoma treatment. In the standalone setting, CaTeVac outperformed conventional monochemotherapy in advanced-stage disease and may serve as a component of personalized immunotherapy in further clinical studies.
References
Состояние онкологической помощи населению России в 2023 году. Под ред. Каприна А.Д., Старинского В.В., Шахзадовой А.О. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2024; 262.-URL: https://oncology-association.ru/wp-content/uploads/2024/06/sop-2023-elektronnaya-versiya.pdf. -ISBN: 978-5-85502-297-1. [The state of cancer care for the Russian population in 2023 Ed. by Kaprin A.D., Starinsky V.V., Shakhzadova A.O. M.: MNOI named after PA Herzen − branch of the Federal State Budgetary Institution "NMIC of Radiology" of the Ministry of Health of the Russian Federation. 2024; 262.-URL: https://oncology-association.ru/wp-content/uploads/2024/06/sop-2023-elektronnaya-versiya.pdf. -ISBN: 978-5-85502-297-1 (in Rus)].
Luke J.J., Ascierto P.A., Khattak M.A., et al. Pembrolizumab versus placebo as adjuvant therapy in stage IIB or IIC melanoma: Final analysis of distant metastasis-free survival in the phase 3 KEYNOTE-716 study. J Clin Oncol. 2023; 41(17_suppl): LBA9505-LBA9505.-DOI: 10.1200/JCO.2023.41.17_suppl.LBA9505.-URL: https://ascopubs.org/doi/abs/10.1200/JCO.2023.41.17_suppl.LBA9505.
Kirkwood J.M., Del Vecchio M., Weber J., et al. Adjuvant nivolumab in resected stage IIB/C melanoma: primary results from the randomized, phase 3 CheckMate 76K trial. Nat Med. 2023; 29(11): 2835-2843.-DOI: 0.1038/s41591-023-02583-21.-URL: https://www.nature.com/articles/s41591-023-02583-2.pdf.
Suda K. The ABCs of preventing hyperprogressive disease after immunotherapy: awareness, biomarkers, and combination. J Thorac Dis. 2019; 11(Suppl 3): S347-S351.-DOI: 10.21037/jtd.2018.12.112.-URL: https://www.ncbi.nlm.nih.gov/pubmed/30997217; https://pmc.ncbi.nlm.nih.gov/articles/PMC6424788/.
Балдуева И.А., Нехаева Т.Л., Проценко С.А., et al. Дендритноклеточные вакцины в иммунотерапии больных солидными опухолями: учебное пособие для врачей и обучающихся в системе высшего и дополнительного профессионального образования.: СПб.: НМИЦ онкологии им. Н.Н. Петрова. 2020.-URL: https://www.niioncologii.ru/science/oncoimmunology/dendritnokletochnye-vakciny-v-immunoterapii-bolnyh-solidnymi-opuholyami.pdf. [Baldueva I.A., Nehaeva T.L., Protsenko S.A., et al. Dendritic-cell vaccines in immunotherapy of patients with solid tumors: a manual for doctors and students in the system of higher and postgraduate education. St Petersburg: N.N. Petrov NMRC of Oncology. 2020.-URL: https://www.niioncologii.ru/science/oncoimmunology/dendritnokletochnye-vakciny-v-immunoterapii-bolnyh-solidnymi-opuholyami.pdf. (in Rus)].
Новик А.В. Принципы современной иммунотерапии. Фарматека. 2018; (7 (360)): 10-18.-DOI: 10.18565/pharmateca.2018.7.10-18.-URL: https://lib.medvestnik.ru/articles/Principy-sovremennoi-immunoterapii.html. [Novik A.V. Principles of modern immunotherapy. Pharmateca. 2018; (7 (360)): 10-18.-DOI: 10.18565/pharmateca.2018.7.10-18.-URL: https://lib.medvestnik.ru/articles/Principy-sovremennoi-immunoterapii.html (in Rus)].
Mastelic-Gavillet B., Balint K., Boudousquie C., et al. Personalized dendritic cell vaccines-recent breakthroughs and encouraging clinical results. Front Immunol. 2019; 10: 766.-DOI: 10.3389/fimmu.2019.00766.-URL: https://www.ncbi.nlm.nih.gov/pubmed/31031762; https://pmc.ncbi.nlm.nih.gov/articles/PMC6470191/.
Silva R.O.d.S., Freitas J.L.R., Gonçalves O.d.D.d.R.R., et al. Dendritic cell vaccine as a strategy to prevent melanoma recurrence after local resection: A systematic review and meta-analysis. J Clin Oncol. 2024; 42(16_suppl): e21561-e21561.-DOI: 10.1200/JCO.2024.42.16_suppl.e21561.-URL: https://ascopubs.org/doi/abs/10.1200/JCO.2024.42.16_suppl.e21561.
Lei W., Zhou K., Lei Y., et al. Cancer vaccines: platforms and current progress. Mol Biomed. 2025; 6(1): 3.-DOI: 0.1186/s43556-024-00241-81.-URL: https://www.ncbi.nlm.nih.gov/pubmed/39789208.
Patent 2714208 C1. Балдуева И.А., Данилова А.Б., Нехаева Т.Л., et al. Клеточный продукт для нагрузки и активации дендритных клеток человека. Рос. Фед.: Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова" Министерства здравоохранения Российской Федерации. Priority date 2019-03-05. 2019.-URL: https://www.elibrary.ru/item.asp?id=42480199. [Patent 2714208 C1. Baldueva I.A., Danilova A.B., Nehaeva T.L., et al. Cellular product for loading and activation of human dendritic cells. Ros. Fed.: Federal State Budgetary Institution N.N. Petrov National Medical Research Center of Oncology. Ministry of Health of the Russian Federation. Priority date 2019-03-05. 2019.-URL: https://www.elibrary.ru/item.asp?id=42480199 (In Rus)].
Eisenhauer E.A., Therasse P., Bogaerts J., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer (Oxford, England: 1990). 2009; 45(2): 228-247.-DOI: 10.1016/j.ejca.2008.10.026.
ClinicalTrials.gov. Identifier: NCT05539677. Biobank and Register of Patients With Agresive Tumors for Translational and Analytical Research (REGATA). N.N. Petrov National Medical Research Center of Oncology.-URL: https://www.clinicaltrials.gov/study/NCT05539677?term=REGATA&rank=1 (19.06.2024).
Мерабишвили В.М., Чепик О.Ф. Анализ выживаемости и погодичной летальности больных злокачественной меланомой кожи на популяционном уровне. Вопросы онкологии. 2006; 52(4): 385-391.-EDN: KWAGSX.-URL: https://elibrary.ru/download/elibrary_12887178_98086678.pdf. [Merabishvili V.M., Chepik O.F. Evaluation of survival and yearly lethality in malignant skin melanoma in a population. Voprosy Onkologii = Problems in Oncology. 2006; 52(4): 385-391.-EDN: KWAGSX. URL: https://elibrary.ru/download/elibrary_12887178_98086678.pdf. (in Rus)].
Schoenfeld D.A. Sample-size formula for the proportional-hazards regression model. Biometrics. 1983; 39(2): 499-503.-URL: https://www.ncbi.nlm.nih.gov/pubmed/6354290.
Fleming T.R. One-sample multiple testing procedure for phase II clinical trials. Biometrics. 1982; 38(1): 143-151.
Sheykhhasan M., Ahmadieh-Yazdi A., Heidari R., et al. Revolutionizing cancer treatment: The power of dendritic cell-based vaccines in immunotherapy. Biomed Pharmacother. 2025; 184: 117858.-DOI: 10.1016/j.biopha.2025.117858.-URL: https://www.ncbi.nlm.nih.gov/pubmed/39955851.
Bol K.F., Schreibelt G., Bloemendal M., et al. Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial. Nat Commun. 2024; 15(1): 1632.-DOI: 10.1038/s41467-024-45358-0.-URL: https://www.ncbi.nlm.nih.gov/pubmed/38395969.
Носов Д.А. Критерии оценки клинической значимости. Злокачественные опухоли. 2024; 14(3s2): 6-14. [Nosov D.A. Clinical significance assessment criteria. Malignant Tumors. 2024; 14(3s2): 6-14.(In Rus)].
Dillman R.O., Cornforth A.N., McClay E.F., Depriest C. Patient-specific dendritic cell vaccines with autologous tumor antigens in 72 patients with metastatic melanoma. Melanoma Manag. 2019; 6(2): MMT20.-DOI: 10.2217/mmt-2018-0010.-URL: https://www.ncbi.nlm.nih.gov/pubmed/31406564.
Anguille S., Smits E.L., Lion E., et al. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014; 15(7): e257-267.-DOI: 10.1016/s1470-2045(13)70585-0.
van Willigen W.W., Bloemendal M., Boers-Sonderen M.J., et al. Response and survival of metastatic melanoma patients treated with immune checkpoint inhibition for recurrent disease on adjuvant dendritic cell vaccination. Oncoimmunology. 2020; 9(1): 1738814.-DOI: 10.1080/2162402x.2020.1738814.-URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC7790511/.
Boudewijns S., Koornstra R.H., Westdorp H., et al. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination. Oncoimmunology. 2016; 5(8): e1201625.-DOI: 10.1080/2162402x.2016.1201625.-URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC5007966/.
Petenko N.N., Mikhaylova I.N., Chkadua G.Z., et al. Adjuvant dendritic cell (DC)-based vaccine therapy of melanoma patients. J Clin Oncol. 2012; 30(15_suppl): 2524-2524.-DOI: 10.1200/jco.2012.30.15_suppl.2524.-URL: https://ascopubs.org/doi/abs/10.1200/jco.2012.30.15_suppl.2524.
Baxi S., Yang A., Gennarelli R.L., et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ (Clinical research ed). 2018; 360: k793.-DOI: 0.1136/bmj.k7931.-URL: https://www.bmj.com/content/bmj/360/bmj.k793.full.pdf.
Данилова А.Б., Новик А.В., Нехаева Т.Л., Балдуева И.А. Роль факторов иммуносупрессии в прогнозе эффективности клеточной иммунотерапии у пациентов с солидными опухолями. Эффективная фармакотерапия. 2022; 18(17): 8-17.-DOI: 10.33978/2307-3586-2022-18-17-8-17. [Danilova A.B., Novik A.V., Nekhaeva T.L., Baldueva I.A. The role of immunosuppressive factors in the prognosis of cellular therapy efficacy in patients with solid tumors. Effective Pharmacotherapy. 2022; 18(17): 8-17.-DOI: 10.33978/2307-3586-2022-18-17-8-17 (in Rus)].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025