Possibilities of Molecular Genetic Testing of Tumor Tissue for Personalized Breast Cancer Treatment
##article.numberofdownloads## 196
##article.numberofviews## 322
pdf (Русский)

Keywords

gene expression
somatic mutation profiling
driver genes
targeted therapy
breast cancer
molecular subtypes of breast cancer

How to Cite

Makarova, M., Nemtsova, M., Chekini, D., Chernevskiy, D., Kosova, E., Baranova, E., Sagaydak, O., Krinitsina, A., & Belenikin, M. (2023). Possibilities of Molecular Genetic Testing of Tumor Tissue for Personalized Breast Cancer Treatment. Voprosy Onkologii, 69(6), 1002–1013. https://doi.org/10.37469/0507-3758-2023-69-6-1002-1013

Abstract

Today, the modern genomic technologies are changing the approach to diagnostics and treatment of cancer. For example, clinical approaches to the prevention, diagnosis and treatment of breast cancer have shifted towards the use of molecular genetic and immunohistochemical testing.

The review aims to describe the possibilities of using various tumor tissue genetic testing to improve the efficacy of breast cancer treatment. The review discusses the results of application of modern molecular (The Cancer Genome Atlas) and immunohistochemical (surrogate) markers for breast cancer subtypes classification, the advantages and disadvantages of such separation are presented. The main characteristics of modern expression-based prognostic tests  are presented, and the feasibility and difficulties of using next-generation sequencing, including extended multigene NGS panels  in clinical practice are discussed. The review targets residents and postgraduates, geneticists and oncologists, who use the results of modern molecular genetic tests in their work.

https://doi.org/10.37469/0507-3758-2023-69-6-1002-1013
##article.numberofdownloads## 196
##article.numberofviews## 322
pdf (Русский)

References

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931-945. https://doi.org/10.1038/nature03001.

Collins F. Cancer: a disease of the genome. Cancer Res. 2007;67(9_Supplement):PL01-01.

Bader JS. The Panorama of cancer genetics. Cancer Res. 2021;81(10):2586-2587. https://doi.org/10.1158/0008-5472.CAN-21-0885.

Johnson TM. Perspective on precision medicine in oncology. Pharmacotherapy. 2017;37(9):988-989. https://doi.org/10.1002/phar.1975.

Li MM, Drilon A, Laetsch TW. Editorial. Cancer Genet. 2022;266-267:37-38. https://doi.org/10.1016/j.cancergen.2022.06.002.

Napoli GC, Chau CH, Figg WD. Single whole genome sequencing analysis blazes the trail for precision medicine. Cancer Biol Ther. 2022;23(1):134-135. https://doi.org/10.1080/15384047.2022.2033058.

Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15-23. https://doi.org/10.1016/j.breast.2022.08.010.

Zdrav.Expert [Internet] [cited 2023 Jun 23]. Available from: https://zdrav.expert/index.php.

Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой – М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022:252 [Malignant neoplasms in Russia in 2021 (morbidity and mortality). AD Kaprin, VV Starinsky, AO Shakhzadova, eds. M.: P.A. Herzen MNIOI - a branch of FGBU "NMRC Radiology" of the Ministry of Health of Russia. 2022:252 (Russ.)].

The Cancer Genome Atlas Program [Internet]. National Cancer Institute 2022 [cited 2022 Sep 8]. Available from: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga.

Carpten JC, Mardis ER. The era of precision oncogenomics. Cold Spring Harb Mol Case Stud. 2018;4(2):a002915. https://doi.org/10.1101/mcs.a002915.

De S, Ganesan S. Looking beyond drivers and passengers in cancer genome sequencing data. Ann Oncol. 2017;28(5):938-945. https://doi.org/10.1093/annonc/mdw677.

Yu B, O'Toole SA, Trent RJ. Somatic DNA mutation analysis in targeted therapy of solid tumours. Transl Pediatr. 2015;4(2):125-138. https://doi.org/10.3978/j.issn.2224-4336.2015.04.04.

Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-752. https://doi.org/10.1038/35021093.

Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869-10874. https://doi.org/10.1073/pnas.191367098.

Ahr A, Karn T, Solbach C, et al. Identification of high risk breast-cancer patients by gene expression profiling. Lancet. 2002;359(9301):131-132. https://doi.org/10.1016/S0140-6736(02)07337-3.

Van 't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530-536. https://doi.org/10.1038/415530a.

Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 2003;100(18):10393-10398. https://doi.org/10.1073/pnas.1732912100.

Lucito R, Healy J, Alexander J, et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003;13(10):2291-2305. https://doi.org/10.1101/gr.1349003.

Hicks J, Krasnitz A, Lakshmi B, et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res. 2006;16(12):1465-1479. https://doi.org/10.1101/gr.5460106.

Ciriello G, Miller ML, Aksoy BA, et al. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127-1133. https://doi.org/10.1038/ng.2762.

Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. https://doi.org/10.1038/nature11412.

Mahdi AS, Ibrahim HH, Mohammed AA. Ki-67 expression as an indicator of invasiveness in patients with breast cancer. Medical Journal of Babylon. 2018;15(4):271-5.

Irigoyen MA, García FV, Iturriagagoitia AC, et al. Subtipos moleculares del cáncer de mama: implicaciones pronósticas y características clínicas e inmunohistoquímicas [Molecular subtypes of breast cancer: prognostic implications and clinical and immunohistochemical characteristics]. An Sist Sanit Navar. 2011;34(2):219-33. https://doi.org/10.4321/s1137-66272011000200008.

Curigliano G, Burstein HJ, Winer EP, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017;28(8):1700-1712. https://doi.org/10.1093/annonc/mdx308.

Niwińska A, Olszewski W, Murawska M, et al. Triple-negative breast cancer with brain metastases: a comparison between basal-like and non-basal-like biological subtypes. J Neurooncol. 2011;105(3):547-553. https://doi.org/10.1007/s11060-011-0616-3.

Lehmann BD, Jovanovic B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE. 2016;11(6):e0157368.

Khoury T, Kanehira K, Wang D, et al. Breast carcinoma with amplified HER2: a gene expression signature specific for trastuzumab resistance and poor prognosis. Mod Pathol. 2010;23(10):1364-1378.

Zhang X. Molecular classification of breast cancer: relevance and challenges. Archives of Pathology & Laboratory Medicine. 2023;147(1):46-51. https://doi.org/10.5858/arpa.2022-0070-RA.

Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736-1747. https://doi.org/10.1093/annonc/mdr304.

Sparano JA, Gray RJ, Makower DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;379(2):111-121. https://doi.org/10.1056/NEJMoa1804710.

Slodkowska EA, Ross JS. MammaPrint 70-gene signature: another milestone in personalized medical care for breast cancer patients. Expert Rev Mol Diagn. 2009;9(5):417-422. https://doi.org/10.1586/erm.09.32.

Brandão M, Pondé N, Piccart-Gebhart M. Mammaprint™: a comprehensive review. Future Oncol. 2019;15(2):207-224. https://doi.org/10.2217/fon-2018-0221.

Piccart M, van't Veer LJ, Poncet C, et al. 70‐gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncol. 2021;22:476‐488. https://doi.org/10.1016/S1470-2045(21)00007-3.

Viale G, de Snoo FA, Slaets L, et al. Immunohistochemical versus molecular (BluePrint and MammaPrint) subtyping of breast carcinoma. Outcome results from the EORTC 10041/BIG 3-04 MINDACT trial. Breast Cancer Res Treat. 2018;167(1):123-131. https://doi.org/10.1007/s10549-017-4509-9.

Noordhoek I, Treuner K, Putter H, et al. Breast cancer index predicts extended endocrine benefit to individualize selection of patients with HR+ early-stage breast cancer for 10 years of endocrine therapy. Clin Cancer Res. 2021;27(1):311-319. https://doi.org/10.1158/1078-0432.CCR-20-2737.

Martin M, Brase JC, Ruiz A, et al. Prognostic ability of EndoPredict compared to research-based versions of the PAM50 risk of recurrence (ROR) scores in node-positive, estrogen receptor-positive, and HER2-negative breast cancer. A GEICAM/9906 sub-study. Breast Cancer Res Treat. 2016;156(1):81-89. https://doi.org/10.1007/s10549-016-3725-z

Martín M, Prat A, Rodríguez-Lescure A, et al. PAM50 proliferation score as a predictor of weekly paclitaxel benefit in breast cancer. Breast Cancer Res Treat. 2013;138(2):457-466. https://doi.org/10.1007/s10549-013-2416-2.

Pu M, Messer K, Davies SR, et al. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res Treat. 2020;179(1):197-206. https://doi.org/10.1007/s10549-019-05446-y.

Dowsett M, Sestak I, Lopez-Knowles E, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31(22):2783-90. https://doi.org/10.1200/JCO.2012.46.1558.

Sestak I, Filipits M, Buus R, et al. Prognostic value of endopredict in women with hormone receptor-positive, HER2-negative invasive lobular breast cancer. Clin Cancer Res. 2020;26(17):4682-4687. https://doi.org/10.1158/1078-0432.CCR-20-0260.

Xin L, Liu YH, Martin TA, et al. The era of multigene panels comes? The clinical utility of oncotype DX and MammaPrint. World J Oncol. 2017;8(2):34-40. https://doi.org/10.14740/wjon1019w

Боженко В.К., и др. Возможности типирования рака молочной железы с использованием методики ОТ-ПЦР. Сибирский онкологический журнал. 2019;18(5):61-67 [Bozhenko VK, et al. Possibilities of breast cancer typing using RT-PCR technique. Siberian journal of oncology. 2019;18(5):61-67 (In Russ).]. https://doi.org/10.21294/1814-4861-2019-18-5-61-67.

Оценка риска рецидива при раке молочной железы. [Assessment of the risk of recurrence in breast cancer. (In Russ.)]. Globalindexbc.ru [Internet] [Accessed 2022 Sep 8] Available from: http://globalindexbc.ru/.

Munkácsy G, Santarpia L, Győrffy B. Gene Expression Profiling in Early Breast Cancer-Patient Stratification Based on Molecular and Tumor Microenvironment Features. Biomedicines. 2022;10(2):248. https://doi.org/10.3390/biomedicines10020248.

Melas M, Subbiah S, Saadat S, et al. The community oncology and academic medical center alliance in the age of precision medicine: cancer genetics and genomics considerations. J Clin Med. 2020;9(7):2125. https://doi.org/10.3390/jcm9072125.

Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402. https://doi.org/10.1146/annurev.genom.9.081307.164359.

Oliver GR, Hart SN, Klee EW. Bioinformatics for clinical next generation sequencing. Clin Chem. 2015;61(1):124-135. https://doi.org/10.1373/clinchem.2014.224360.

Nagahashi M, Shimada Y, Ichikawa H, et al. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci. 2019;110(1):6-15. https://doi.org/10.1111/cas.13837.

Imyanitov E. Sokolenko A. Integrative genomic tests in clinical oncology. Int J Mol Sci. 2022;23:13129. https://doi.org/10.3390/ijms232113129.

Vidula N, Lipman A, Kato S, et al. Detection of microsatellite instability high (MSI-H) status by targeted plasma-based genotyping in metastatic breast cancer. NPJ Breast Cancer. 2022;8(1):117. https://doi.org/10.1038/s41523-022-00490-2.

Bonneville R, Krook MA, Chen HZ, et al. Detection of microsatellite instability biomarkers via next-generation sequencing. Methods Mol Biol. 2020;2055:119-132. https://doi.org/10.1007/978-1-4939-9773-2_5.

Hempelmann JA, Scroggins SM, Pritchard CC, et al. MSIplus for Integrated Colorectal Cancer Molecular Testing by Next-Generation Sequencing. J Mol Diagn. 2015;17(6):705-14. https://doi.org/10.1016/j.jmoldx.2015.05.008.

Pritchard CC, Smith C, Salipante SJ, et al. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn. 2012;14(4):357-66. https://doi.org/10.1016/j.jmoldx.2012.03.002.

Cai Y, Wang C, Zhou S, et al. Comparison of the tumor mutation burden (TMB) analysis results between a targeted next-generation sequencing method and the conventional WES method. J Clin Oncol. 2018;36(15_suppl):e24186-e24186. http://dx.doi.org/10.1200/jco.2018.36.15_suppl.e24186.

Cordova-Delgado M, Pizarro G, Pinto MP, et al. Case report: molecular features and treatment options for small bowel adenocarcinoma. Front Oncol. 2021;11:593561. https://doi.org/10.3389/fonc.2021.593561.

Yang S, Wang X, Jiang H, et al. Effective treatment of aggressive fibromatosis with celecoxib guided by genetic testing. Cancer Biol Ther. 2017;18(10):757-760. https://doi.org/10.1080/15384047.2017.1373215.

Hou H, Zhu H, Zhao H, et al. Comprehensive molecular characterization of young chinese patients with lung adenocarcinoma identified a distinctive genetic profile. Oncologist. 2018;23(9):1008-1015. https://doi.org/10.1634/theoncologist.2017-0629.

Hou H, Yang X, Zhang J, et al. Discovery of targetable genetic alterations in advanced non-small cell lung cancer using a next-generation sequencing-based circulating tumor DNA assay. Sci Rep. 2017;7(1):14605. https://doi.org/10.1038/s41598-017-14962-0.

Hou H, Liu D, Zhang C, et al. Targeted next generation sequencing in Chinese colorectal cancer patients guided anti-EGFR treatment and facilitated precision cancer medicine. Oncotarget. 2017;8(62):105072-105080. https://doi.org/10.18632/oncotarget.21349.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023