Abstract
Introduction. Melanoma is an area of increasing research interest, particularly in the identification of specific biological pathways involved in its development and progression. Mitochondrial metabolism plays an important role in the development of melanoma, as its rearrangements affect the survival of malignant cells.
Aim. To investigate the ability of mitochondria isolated from melanoma to form tumor structures in animals.
Materials and methods. The experiment was performed on 17 male С57ВL/6 mice, using the В16/F10 cutaneous melanoma strain. Mitochondria were isolated by differential centrifugation from cutaneous В16/F10 melanomas obtained from male donor С57ВL/6 mice (n = 3). Mice of the C57BL/6 strain (n = 7) were given a single transplant of freshly isolated B16/F10 melanoma mitochondria into the muscle. 57L/6 males (n = 7) with a single injection of 0.4 ml saline served as the control. Sections of internal organs and В16/F10 melanoma foci were morphologically checked after processing, paraffin embedding and hematoxylin and eosin staining with the following microscopy on the Axiovert microscope (Carl Zeiss, Germany) based on the Axiovision 4 image visualization program (Carl Zeiss, Germany). Sections were examined and photographed using a JEM-1400 electron microscope (JEOL Inc., Japan) equipped with a Quemesa CCD system (OSIS, Germany) and operated at 100 kV.
Results. After 2 weeks, autopsy of the animals revealed multiple melanoma nodules in the abdominal cavity with dissemination to the peritoneum, mesentery, large and small intestine and liver. Morphological examination of a large tumor node adjacent to the kidney and a small node on the spermatic cord confirmed the melanocytic nature of the cells.
Conclusion. This is the first time that such a phenomenon has been observed, and it requires further study of the mechanisms of the mitochondrial program of malignant transformation.
References
Chaffer K.L., Weinberg R.A. A look at cancer cell metastasis. Science. 2011; 331: 1559-1564.-DOI: https://doi.org/10.1126/science.1203543.
Juan C., Radi R.H., Arbeizer JL. Mitochondrial metabolism in melanoma. Cells. 2021; 10(11): 3197.-DOI: https://doi.org/10.3390/cells10113197.
Франциянц Е.М., Нескубина И.В., Черярина Н.Д., et al. Функциональное состояние митохондрий кардиомиоцитов при злокачественном процессе на фоне коморбидной патологии в эксперименте. Южно-Российский онкологический журнал. 2021; 2(3): 13-22.-DOI: https://doi.org/10.37748/2686-9039-2021-2-3-2. [Frantsiyants E.M., Neskubina I.V., Cheryarina N.D., et al. Functional state of cardiomyocyte mitochondria in malignant process in presence of comorbid pathology in experiment. South Russian Journal of Cancer. 2021; 2(3): 13-22.-DOI: https://doi.org/10.37748/2686-9039-2021-2-3-2. (In Rus)].
Denisenko T.V., Gorbunova A.S., Zhivotovsky B. Mitochondrial involvement in migration, invasion and metastasis. Front Cell Dev Biol. 2019; 7: 355.-DOI: https://doi.org/10.3389/fcell.2019.00355.
Kit O.I., Shikhlyarova A.I., Frantsiyants E.M., et al. Mitochondrial therapy: direct visual assessment of the possibility of preventing myocardial infarction under chronic neurogenic pain and B16 melanoma growth in the experiment. Cardiometry. 2022; 22: 38-49.-DOI: https://doi.org/10.18137/cardiometry.2022.22.3849.
Kit O.I., Frantsiyants E.M., Shikhlyarova A.I., et al. Biological effects of mitochondrial therapy: preventing development of myocardial infarction and blocking metastatic aggression of B16/F10 melanoma. Cardiometry. 2022; 22: 50-55.-DOI: https://doi.org/10.18137/cardiometry.2022.22.3849.
Nagase H., Watanabe T., Koshikawa N., et al. Mitochondria: Endosymbiont bacteria DNA sequence as a target against cancer. Cancer Sci. 2021; 112(12): 4834-4843.-DOI: https://doi.org/10.1111/cas.15143.
Burt R., Dey A., Aref S., et al. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood. 2019; 134(17): 1415-1429.-DOI: https://doi.org/10.1182/blood.2019001398.
Егорова М.В., Афанасьев С.А. Выделение митохондрий из клеток и тканей животных и человека: Современные методические приемы. Сибирский медицинский журнал. 2011; 26(1-1): 22-28. [Egorova M.V., Afanasyev S.A. Isolation of mitochondria from cells and tissues of animals and human: modern methodical approaches. The Siberian Medical Journal. 2011; 26(1-1): 22-28. (In Rus)].
Гуреев А.П., Кокина А.В., Сыромятникова М.Ю., Попов В.Н. Оптимизация методов выделения митохондрий из разных тканей мыши. Вестник ВГУ, серия: химия, биология, фармация. 2015; 4: 61-65. [Gureev A.P., Kokina A.V., Syromyatnikov M.Yu., Popov V.N. Optimization of methods for isolating mitochondria from different mouse tissues. VSU Vestnik, Series: Chemistry. Biology. Pharmacia. 2015; 4: 61-65. (In Rus)].
Юрьева Е.А., Шапошников А.В., Кутилин Д.С. Генетические и транскриптомные регуляторы функционального состояния печени у пациентов с гепатоцеллюлярной карциномой и жировым гепатозом. Современные проблемы науки и образования. 2023;(6): 15-15.-DOI: https://doi.org/10.17513/spno.33038.-URL: https://science-education.ru/ru/article/view?id=33038. [Yureva E.A., Shaposhnikov A.V., Kutilin D.S. Genetic and Transcriptomic Regulators of the Liver Functional State in Hepatocellular Carcinoma and Fatty Hepatosis Patients. Modern Problems of Science and Education. 2023;(6): 15-15.-DOI: https://doi.org/10.17513/spno.33038.-URL: https://science-education.ru/ru/article/view?id=33038. (In Rus)].
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2024