Изменение цитокинового профиля у пациентов с колоректальным раком на фоне антиVEGF терапии
Загрузок: 154
Просмотров: 166
pdf

Ключевые слова

метастатический колоректальный рак (мКРР)
бевацизумаб
цитокины
антиVEGF

Как цитировать

Кит, О. И., Владимирова, Л. Ю., Сагакянц, А. Б., Тишина, А. В., Шульгина , О. Г., Закарян, К. М., Ульянова, Е. П., Новикова, И. А., Златник, Е. Ю., & Дженкова, Е. А. (2023). Изменение цитокинового профиля у пациентов с колоректальным раком на фоне антиVEGF терапии. Вопросы онкологии, 69(6), 1049–1056. https://doi.org/10.37469/0507-3758-2023-69-6-1049-1056

Аннотация

Введение. Колоректальный рак по-прежнему занимает лидирующие позиции в структурах заболеваемости и смертности во всем мире, а процент пациентов резистентных к проводимой терапии остается достаточно высоким и требует поиска предиктивных маркеров эффективности для индивидуализации терапии. Неоангиогенез является причиной роста и прогрессирования злокачественных опухолей. Показана взаимосвязь между ангиогенезом, его регуляторными механизмами и изменениями в иммунной системе.

Целью исследования было проанализировать особенности цитокинового профиля периферической крови пациентов с метастатическим колоректальным раком (мКРР), получавших терапию первой линии препаратом бевацизумаб в комбинации с химиотерапией до и после 4 курсов лечения.

Материалы и методы. Методом мультиплексного анализа с использованием набора Bio-Plex Pro Human Immunotherapy 20-Plex Panel определяли концентрацию цитокинов в сыворотке крови 24 больных мКРР, проходивших лечение в отделении противоопухолевой лекарственной терапии ФГБУ «НМИЦ онкологии» Минздрава России, до и после 4 курсов терапии.

Результаты. Проведение анти-VEGF терапии сопровождается разнонаправленным изменением содержания определяемых цитокинов: снижением IL-13, IL-6, IL-5 и GM-CSF и увеличением MIP-1α, IL-4, IL-8, IL-2, IFN-γ. Для IL-7, IL-10, IL-15, IL-17A, IL-18, IP-10, MCP-1, MIG, MIP-1β, RANTES, TNF-α изменений по сравнению с исходным уровнем не выявлено. В случае наличия положительного эффекта от терапии выявлено снижение концентрации IL-13, IL-5, IL-2, IL-10 как в случае полного ответа, так и при частичном ответе. Спектр цитокинов, содержание которых увеличивалось либо оставалось без изменения, был разнородным при различных вариантах ответа. Прогрессия заболевания характеризовалась увеличением содержания MIP-1α и IP-10, более выраженным снижением концентрации цитокинов, активирующих различные эффекторные механизмы иммунной защиты (GM-CSF, IL-6, IL-2, RANTES).

Заключение. При проведении терапии мКРР с использованием анти-VEGF препаратов формируются определенные варианты цитокинового профиля, которые могут указывать на характер развивающихся процессов, что может быть использовано для оценки эффективности проводимого лечения.

https://doi.org/10.37469/0507-3758-2023-69-6-1049-1056
Загрузок: 154
Просмотров: 166
pdf

Библиографические ссылки

Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. https://doi.org/10.3322/caac.21763.

Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2021:252 [Ed by AD Kaprin, VV Starinsky, AO Shakhzadova. Malignant neoplasms in Russia in 2020 (morbidity and mortality). P.A. Herzen Institute of Medical Research − branch of the Federal State Budgetary Institution «NMIC of Radiology» of the Ministry of Health of Russia. 2021:252 (In Russ.)].

Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10(6):417-27. https://doi.org/10.1038/nrd3455.

Mariotti V, Fiorotto R, Cadamuro M, et al. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep. 2021;3:100251. https://doi.org/10.1016/j.jhepr.2021.100251.

Wada S, Tsunoda T, Baba T, et al. Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Clin Cancer Res. 2005;65:4939-4946. https://doi.org/10.1158/0008-5472.CAN-04-3759

Ishizaki H, Tsunoda T, Wada S, et al. Inhibition of tumor growth with antiangiogenic cancer vaccine using epitope peptides derived from human vascular endothelial growth factor receptor 1. Clin Cancer Res. 2006;12:5841-5849. https://doi.org/10.1158/1078-0432.CCR-06-0750.

Wang Y, Fei D, Vanderlaan M, et al. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis. 2004;7:335-345. https://doi.org/10.1007/s10456-004-8272-2.

New treatments for colorectal cancer. FDA Consum. 2004;38(3):17.

Водолажский Д.И., Антонец А.В., Двадненко К.В., и др. Связь мутаций гена KRAS с клинико-патологическими особенностями колоректального рака у пациентов Юга России. Международный журнал экспериментального образования. 2014;1-1:65-68 [Vodolazhsky DI, Antonets AV, Dvadnenko KV, et al. Association of KRAS mutant type with clinico-pathological features of colorectal cancer in patietns in the south of Russia. International Journal of Experimental Education. 2014;1-1:65-68 (In Russ.)].

Jahangiri A, De Lay M, Miller LM, et al. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res. 2013;19(7):1773-83. https://doi.org/10.1158/1078-0432.CCR-12-1281.

Carbone C, Tamburrino A, Piro G, et al. Combined inhibition of IL1, CXCR1/2, and TGFβ signaling pathways modulates in-vivo resistance to anti-VEGF treatment. Anticancer Drugs. 2016;27(1):29-40. https://doi.org/10.1097/CAD.0000000000000301.

Prete A, Lo AS, Sadow PM, et al. Pericytes elicit resistance to vemurafenib and sorafenib therapy in thyroid carcinoma via the TSP-1/TGFβ1 axis. Clin Cancer Res. 2018;24(23):6078-6097. https://doi.org/10.1158/1078-0432.CCR-18-0693.

Castro BA, Flanigan P, Jahangiri A, et al. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy. Oncogene. 2017;36(26):3749-3759. https://doi.org/10.1038/onc.2017.1.

Lereclus E, Tout M, Girault A, et al. A possible association of baseline serum IL-17A concentrations with progression-free survival of metastatic colorectal cancer patients treated with a bevacizumab-based regimen. BMC Cancer. 2017;17(1):220. https://doi.org/10.1186/s12885-017-3210-z.

Никипелова Е.А., Кит О.И., Шапошников А.В., и др. Колоканцерогенез: онкоиммунология локальных изменений. Злокачественные опухоли. 2016;4(Спецвыпуск 1):81-86 [Nikipelova EA, Kit OI, Shaposhnikov AV, et al. Colocancerogenesis: oncoimmunology of local changes. Malignant Tumors. 2016;4(Spec Issuse 1):81-86 (In Russ.)]. https://doi.org/10.18027/2224-5057-2016-4s1-81-86.

Никипелова Е.А., Кит О.И., Шапошников А.В., и др. Иммунологические критерии развития отдаленных метастазов рака толстой кишки. Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2017;3-2(195-2) [Nikipelova EA, Kit OI, Shaposhnikov AV, et al. Immunological criteria for the development of distant metastases of colon cancer. News of higher educational institutions. The North Caucasus region. Series: Natural Sciences. 2017;3-2(195-2) (In Russ.)].

Кит О.И., Дженкова Е.А., Мирзоян Э.А., и др. Особенности локального клеточного иммунитета при раке ободочной кишки в зависимости от локализации опухолевого процесса. Современные проблемы науки и образования. 2022; 3(2022):2–2 [Kit OI, Dzhenkova EA, Mirzoyan EA, et al. Characteristics of local cellular immunity in colon cancer depending on tumor location. Modern Problems of Science and Education. 2022;3(2022):2–2 (In Russ.)]. http://dx.doi.org/10.17513/spno.31695.

Сагакянц А.Б., Дженкова Е.А., Мирзоян Э.А., и др. Основные и минорные популяции лимфоцитов: локальные особенности при различных стадиях рака ободочной кишки. Южно-Российский онкологический журнал. 2023;4(1):34-42 [Sagakyants AB, Dzhenkova EA, Mirzoyan EA, et al. Major and minor populations of lymphocytes: local features in different stages of colon cancer. South Russian Journal of Cancer. 2023;4(1):34-42 (In Russ.)]. https://doi.org/10.37748/2686-9039-2023-4-1-4.

Osama E Rahma, F Stephen Hodi. The Intersection between Tumor Angiogenesis and Immune Suppression. Clin Cancer Res. 2019;25(18):5449-5457.

Terme M, Pernot S, Marcheteau E, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Clin Cancer Res. 2013;73(2):539-49. https://doi.org/10.1158/0008-5472.CAN-12-2325.

Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol. 2013;4:159. https://doi.org/10.3389/fphys.2013.00159.

Holtan ShG, Dronca RS, Nevala WK, et al. The dynamic human immune response to cancer: it might just be rocket science. Immunotherapy. 2011;3(9):1021-4. https://doi.org/10.2217/imt.11.109.

Nevala WK, Vachon CM, Leontovich AA, et al. Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma. Clin Cancer Res. 2009;15(6):1931-1939.

Zhao P, Bu X, Wei X, et al. Dendritic cell immunotherapy combined with cytokine-induced killer cells promotes skewing toward Th2 cytokine profile in patients with metastatic non-small cell lung cancer. International Immunopharmacology. 2015;25(2):450-456. https://doi.org/10.1016/j.intimp.2015.02.010.

Lan T, Chen L, Wei X. Inflammatory cytokines in cancer: comprehensive understanding and clinical progress in gene therapy. Cells. 2021;10(1):100. https://doi.org/10.3390/cells10010100.

Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27-41. https://doi.org/10.1016/j.immuni.2019.06.025

Heichler C, Scheibe K, Schmied A, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut. 2020;69:1269-1282. https://doi.org/10.1136/gutjnl-2019-319200.

Ke W, Zhang L, Dai Y. The role of IL-6 in immunotherapy of non-small cell lung cancer (NSCLC) with immune-related adverse events (irAEs). Thorac Cancer. 2020;11:835-839. https://doi.org/10.1111/1759-7714.13341.

Sun X, Qu Q, Lao Y, et al. Tumor suppressor HIC1 is synergistically compromised by cancer-associated fibroblasts and tumor cells through the IL-6/pSTAT3 axis in breast cancer. BMC Cancer. 2019;19:1180. https://doi.org/10.1186/s12885-019-6333-6.

Kartikasari AER, Huertas CS, Mitchell A, et al. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front Oncol. 2021;11:692142. https://doi.org/10.3389/fonc.2021.692142.

Liao S-J, Luo J, Li D, et al. TGF-β1 and TNF-α synergistically induce epithelial to mesenchymal transition of breast cancer cells by enhancing TAK1 activation. J Cell Commun Signaling. 2019;13(3):369-80. https://doi.org/10.1007/s12079-019-00508-8.

Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers. 2020;12(7):1791. https://doi.org/10.3390/cancers12071791.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2023