Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide. Screening programs for breast, cervical and colorectal colorectal cancer have been shown to be effective in reducing mortality. However, their results are often limited by the availability of resources, coverage of the target population and the ability of the health system to help patients with early forms of the disease. While organized screening based on clear protocols, standardized intervals and continuous monitoring is an effective approach, it still requires significant organizational and financial efforts. As digital technologies advance, a new paradigm is emerging: virtual screening. This approach involves using data obtained outside of organized programs, such as instrumental diagnostics and laboratory tests, to identify risk groups and optimize screening strategies. Virtual screening enables the integration of disparate data using machine learning and artificial intelligence technologies, providing more accurate and personalized risk assessment. It opens up new opportunities to improve the efficiency and accessibility of screening programs, especially in resource-limited settings. This article focuses on the importance of organized screening and the potential of virtual screening to complement it. The discussion will cover key challenges of traditional programs and ways to overcome them with the help of modern technologies, including the introduction of artificial intelligence and big data analytics to increase efficiency, improve patient prognosis and reduce the economic burden on the healthcare system.
References
Global cancer burden growing, amidst mounting need for services. World Health Organization. 2024.-URL: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (30.10.2024).
Cancer today. International Agency for Research on Cancer (IARC): World Health Organization.-URL: https://gco.iarc.fr/today/en/ (30.10.2024).
Барчук А.А., Гагуа К.Э., Тарков С.А., et al., Эффективность скрининга онкологических заболеваний. Вопросы онкологии. 2017; 63(4): 557-567.-DOI: https://doi.org/10.37469/0507-3758-2017-63-4-557-567.-URL: https://voprosyonkologii.ru/index.php/journal/article/view/742. [Barchuk A., Gagua K., Tarkov S., et al. The effectiveness of screening for cancer. Voprosy Onkologii = Problems in Oncology. 2017; 63(4): 557-567.-DOI: https://doi.org/10.37469/0507-3758-2017-63-4-557-567.-URL: https://voprosyonkologii.ru/index.php/journal/article/view/742. (In Rus)].
Kerlikowske K., Grady D., Rubin S.M., et al. Efficacy of screening mammography: a meta-analysis. JAMA. 1995; 273(2): 149-154.-DOI: https://doi.org/10.1001/jama.1995.03520260071035.-URL: https://jamanetwork.com/journals/jama/article-abstract/385823.
Bretthauer M., Løberg M., Wieszczy P., et al. Effect of colonoscopy screening on risks of colorectal cancer and related death. New England Journal of Medicine. 2022; 387: 1547-1556.-DOI: https://doi.org/10.1056/NEJMoa2208375.-URL: https://www.nejm.org/doi/full/10.1056/NEJMoa2208375.
Bedell S.L., Goldstein L.S., Goldstein A.R., et al. Cervical cancer screening: past, present, and future. Sexual Medicine Reviews. 2020; 8(1): 28-37.-DOI: https://doi.org/10.1016/j.sxmr.2019.09.005.-URL: https://academic.oup.com/smr/article/8/1/28/6812651.
Lew J.B., St John D.J.B., Xu X-M., et al. Long-term evaluation of benefits, harms, and cost-effectiveness of the National Bowel Cancer Screening Program in Australia: a modelling study. The Lancet Public Health. 2017; 2(7): e331-e340.-DOI: https://doi.org/10.1016/S2468-2667(17)30105-6. URL: https://www.thelancet.com/journals/lanpub/article/PIIS2468-2667(17)30105-6/fulltext.
US Preventive Services Task Force. Screening for breast cancer. JAMA. 2024; 331(22): 1918-1930.-DOI: https://doi.org/10.1001/jama.2024.5534.-URL: https://jamanetwork.com/journals/jama/fullarticle/2818283.
Dunn B.K., Woloshin S., Xie H., et al. Cancer overdiagnosis: a challenge in the era of screening. Journal of the National Cancer Center. 2022; 2(4): 235-242.-DOI: https://doi.org/10.1016/j.jncc.2022.08.005.-URL: https://www.sciencedirect.com/science/article/pii/S266700542200059X?via%3Dihub.
Black W.C. Overdiagnosis: an underrecognized cause of confusion and harm in cancer screening. Journal of the National Cancer Institute. 2000; 92(16): 1280-1282.-DOI: https://doi.org/10.1093/jnci/92.16.1280.-URL: https://academic.oup.com/jnci/article/92/16/1280/2905911.
Барчук А.А., Раскина Ю.В., Смирнова О.В., et al. Скрининг онкологических заболеваний на уровне государственных программ: обзор, рекомендации и управление. Общественное здоровье. 2021; 1(1): 19-31.-DOI: https://doi.org/10.21045/2782-1676-2021-1-1-19-31.-URL: https://ph.elpub.ru/jour/article/view/5. [Barchuk A.A., Raskina Yu.V., Smirnova O.V., et al. Cancer screening at the level of state programs: review, recommendations and management. Public Health. 2021; 1(1): 19-31.-DOI: https://doi.org/10.21045/2782-1676-2021-1-1-19-31.-URL: https://ph.elpub.ru/jour/article/view/5. (In Rus)].
Wilson J.M.G., Jungner G. Principles and practice of screening for disease. Geneva: World Health Organization. 1968.-URL: https://iris.who.int/handle/10665/37650.
Zhang L., Carvalho A.L., Mosquera I., et al. An international consensus on the essential and desirable criteria for an “organized” cancer screening programme. BMC Medicine. 2022; 20(1): 101.-DOI: https://doi.org/10.1186/s12916-022-02291-7.-URL: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-022-02291-7.
Барчук А.А., Беляев А.М., Филочкина А.В., et al. Скрининг рака и смертность. Практическая онкология. 2016; 17(4): 228-246.-DOI: https://doi.org/10.31917/1704228.-URL: https://practical-oncology.ru/articles/23.pdf. [Barchuk A., Belyaev A., Filochkina A., et al. Cancer screening and mortality. Practical Oncology. 2016; 17(4): 228-246.-DOI: https://doi.org/10.31917/1704228.-URL: https://practical-oncology.ru/articles/23.pdf (in Rus)].
Зуков Р.А., Сафонцев И.П., Клименок М.П., et al. Выявление новых случаев рака легкого с помощью искусственного интеллекта: клиническая и экономическая оценка ретроспективного анализа результатов компьютерной томографии через 2 года после пандемии COVID-19. Digital Diagnostics. 2024; 5(4).-DOI: https://doi.org/10.17816/DD630885.-URL: https://jdigitaldiagnostics.com/DD/article/view/630885. [Zukov R., Safontsev I., Klimenok M., et al. Artificial intelligence in lung cancer detection: clinical and economic assessment of retrospective CT analysis two years post-COVID-19 pandemic. Digital Diagnostics. 2024; 5(4).-DOI: https://doi.org/10.17816/DD630885.-URL: https://jdigitaldiagnostics.com/DD/article/view/630885. (In Rus)].
Keswani R.N., Byrd D., Vicente F.G., et al. Amalgamation of cloud-based colonoscopy videos with patient-level metadata to facilitate large-scale machine learning. Endoscopy International Open. 2021; 9(2): E233-E238.-DOI: https://doi.org/10.1055/a-1326-1289.-URL: https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-1326-1289.
Matti B., Zargar-Shoshtari K. Opportunistic prostate cancer screening: a population-based analysis. Urologic Oncology: Seminars and Original Investigations. 2020; 38(5): 393-400.-DOI: https://doi.org/10.1016/j.urolonc.2019.12.009.-URL https://www.sciencedirect.com/science/article/abs/pii/S107814391930496X?via%3Dihub.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2024