Abstract
Introduction. Stereotactic brain tumor biopsy (STB) currently relies on two primary navigation technologies: frame-based and frameless systems. A significant limitation of both approaches is the inability to visualize the target tumor and biopsy needle in real-time during needle insertion.
Aim. To evaluate the technical efficacy, safety, advantages, and limitations of performing STB under real-time flat-panel detector computed tomography (FDCT) guidance.
Materials and Methods. Between December 2021 and December 2024, 99 patients (46 men, 53 women; median age 56 [46; 68] years) underwent FDCT-guided STB. Procedures were performed using an Artis Zee Floor angiographic system (Siemens, Germany) equipped with a 16-bit digital detector (40 × 30 cm) and utilizing various contrast enhancement techniques. The acquired FDCT images were analyzed using the standard InSpace software package, and trajectory planning was conducted with the iGuide Needed Guidance application. Biopsy needle insertion was performed under two-projection laser guidance and augmented fluoroscopy control. Post-procedural FDCT scans were obtained to confirm technical success and diagnose potential complications.
Results. The median target tumor volume was 6.9 [2.4; 16.6] ml, with a median targeting path length of 47.5 [38; 56] mm. Histological material was successfully obtained in 98% of cases, yielding diagnoses of 62 gliomas, 25 lymphomas, 5 demyelinating processes, 3 encephalitis cases, one adenocarcinoma metastasis of unknown primary, and one case of Erdheim-Chester disease. The median procedure duration was 53 [43; 65] minutes. Complications occurred in 3 (3%) patients, including two cases of intracranial hemorrhage (promptly diagnosed and managed during the procedure) and one case of persistent neurological deficit. No mortality was recorded.
Conclusion. This study demonstrates high diagnostic efficacy and safety of FDCT-guided STB. This technique overcomes the principal limitations of frame-based and frameless STB by providing reliable intraoperative trajectory planning, high-quality real-time neuroimaging and neuronavigation, and immediate complication detection with potential for timely intervention.
References
Patel K.S., Carter B.S., Chen C.C. Role of biopsies in the management of intracranial gliomas. Prog Neurol Surg. 2018; 30: 232-243.-DOI: https://doi.org/10.1159/000464439.
Callovini G.M., Telera S., Sherkat S., et al. How is stereotactic brain biopsy evolving? A multicentric analysis of a series of 421 cases treated in Rome over the last sixteen years. Clin Neurol Neurosurg. 2018; 174: 101-107.-DOI: https://doi.org/10.1016/j.clineuro.2018.09.020.
Yu K.K.H., Patel A.R., Moss N.S. The role of stereotactic biopsy in brain metastases. Neurosurg Clin N Am. 2020; 31(4): 515-526.-DOI: https://doi.org/10.1016/j.nec.2020.06.002.
Dhawan S., He Y., Bartek J., et al. Comparison of frame-based versus frameless intracranial stereotactic biopsy: Systematic review and meta-analysis. World Neurosurg. 2019; 127: 607-616.e4.-DOI: https://doi.org/10.1016/j.wneu.2019.04.016.
Маряшев С.А., Поддубский А.А., Пронин И.Н., et al. Использование современных методов МРТ-визуализации для планирования стереотаксических биопсий опухолевых новообразований головного мозга. Медицинская визуализация. 2022; 26(2): 18-38.-EDN: JHODOR.-DOI: https://doi.org/10.24835/1607-0763-1046. [Maryashev S.A., Poddubskiy A.A., Pronin I.N., et al. MRI imaging for planning stereotactic biopsies of the brain lesions. Medicinskaâ vizualizaciâ = Medical Visualization. 2022; 26(2): 18-38.-EDN: JHODOR.-DOI: https://doi.org/10.24835/1607-0763-1046 (in Rus)].
Ungar L., Nachum O., Zibly Z., et al. Comparison of frame-based versus frameless image-guided intracranial stereotactic brain biopsy: A retrospective analysis of safety and efficacy. World Neurosurg. 2022; 164: e1-e7.-DOI: https://doi.org/10.1016/j.wneu.2021.07.063.
Sugii N., Matsuda M., Tsurubuchi T., Ishikawa E. Hemorrhagic complications after brain tumor biopsy: Risk-reduction strategies based on safer biopsy targets and techniques. World Neurosurg. 2023; 176: e254-e264.-DOI: https://doi.org/10.1016/j.wneu.2023.05.046.
Bex A., Mathon B. Advances, technological innovations, and future prospects in stereotactic brain biopsies. Neurosurg Rev. 2022; 46(1): 5.-DOI: https://doi.org/10.1007/s10143-022-01918-w.
Балахнин П.В., Буровик И.А., Багненко С.С. Технологии визуализации, наведения и слежения в интервенционной онкологии: Современные возможности и перспективы дальнейшего развития. Медицина высоких технологий. 2024; 2(2): 5-21.-EDN: CHVTFU. [Balakhnin P.V., Burovik I.A., Bagnenko S.S. Technologies of visualization, guidance and tracking in interventional oncology: Current capabilities and prospects for further development. Medicina Vysokih Tehnologij. 2024; 2(2): 5-21.-EDN: CHVTFU (in Rus)].
Kalender W.A., Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol. 2007; 17(11): 2767-79.-DOI: https://doi.org/10.1007/s00330-007-0651-9.
Балахнин П.В., Багненко С.С., Беляев А.М. Плоскодетекторная компьютерная томография в интервенционной радиологии: Предпосылки появления и история создания. Медицина высоких технологий. 2024; 2(1): 12-34.-EDN: GKYDDI. [Balakhnin P.V., Bagnenko S.S., Belyaev A.M. Flat-detector computed tomography in interventional radiology: Background and history of creation. Medicina Vysokih Tehnologij. 2024; 2(1): 12-34.-EDN: GKYDDI (in Rus)].
Raz E., Nossek E., Sahlein D.H., et al. Principles, techniques and applications of high resolution cone beam CT angiography in the neuroangio suite. J Neurointerv Surg. 2023; 15(6): 600-607.-DOI: https://doi.org/10.1136/jnis-2022-018722.
Key B.M., Tutton S.M., Scheidt M.J. Cone-beam CT with enhanced needle guidance and augmented fluoroscopy overlay: Applications in interventional radiology. AJR Am J Roentgenol. 2023; 221(1): 92-101.-DOI: https://doi.org/10.2214/AJR.22.28712.
Cooke D.L., Levitt M., Kim L.J., et al. Transcranial access using fluoroscopic flat panel detector CT navigation. AJNR Am J Neuroradiol. 2011; 32(4): E69-70.-DOI: https://doi.org/10.3174/ajnr.A2066.
Fiorella D., Peeling L., Denice C.M., et al. Integrated flat detector CT and live fluoroscopic-guided external ventricular drain placement within the neuroangiography suite. J Neurointerv Surg. 2014; 6(6): 457-60.-DOI: https://doi.org/10.1136/neurintsurg-2013-010856.
Yang Z., Hong B., Jia Z., et al. Treatment of supratentorial spontaneous intracerebral hemorrhage using image-guided minimally invasive surgery: Initial experiences of a flat detector CT-based puncture planning and navigation system in the angiographic suite. AJNR Am J Neuroradiol. 2014; 35(11): 2170-5.-DOI: https://doi.org/10.3174/ajnr.A4009.
Enders F., Rothfuss A., Brehmer S., et al. Optimized intraoperative imaging for stereotactic planning with a multiaxial robotic C-arm system: Technical note and case series. J Neurol Surg A Cent Eur Neurosurg. 2022; 83(6): 588-595.-DOI: https://doi.org/10.1055/s-0041-1731754.
Truckenmueller P., Früh A., Kissner J.F., et al. Integration of a lightweight and table-mounted robotic alignment tool with automated patient-to-image registration using robotic cone-beam CT for intracranial biopsies and stereotactic electroencephalography. Neurosurg Focus. 2024; 57(6): E2.-DOI: https://doi.org/10.3171/2024.9.FOCUS24525.
Курносов И.А., Балахнин П.В., Субботина Д.Р., et al. Интраоперационная плоскодетекторная компьютерная томография как метод выбора при стереотаксической биопсии опухолей головного мозга. Вопросы онкологии. 2023; 69(3S): 287-288.-EDN: SVIIID. [Kurnosov I.A., Balakhnin P.V., Subbotina D.R., et al. Intraoperative flat-panel computed tomography as the method of choice for stereotactic biopsy of brain tumors. Voprosy Onkologii = Problems in Oncology. 2023; 69(3S): 287-288.-EDN: SVIIID (in Rus)].
Poca M.A., Martínez-Ricarte F-R., Gándara D.F., et al. Target location after deep cerebral biopsies using low-volume air injection in 75 patients. Results and technical note. Acta Neurochir (Wien). 2017; 159(10): 1939-1946.-DOI: https://doi.org/10.1007/s00701-017-3191-3.
Mabray M.C., Datta S., Lillaney P.V., et al. Accuracy of flat panel detector CT with integrated navigational software with and without MR fusion for single-pass needle placement. J Neurointerv Surg. 2016; 8(7): 731-5.-DOI: https://doi.org/10.1136/neurintsurg-2015-011799.
Skyrman S., Lai M., Edström E., et al. Augmented reality navigation for cranial biopsy and external ventricular drain insertion. Neurosurg Focus. 2021; 51(2): E7.-DOI: https://doi.org/10.3171/2021.5.FOCUS20813.
Riche M., Amelot A., Peyre M., et al. Complications after frame-based stereotactic brain biopsy: a systematic review. Neurosurg Rev. 2021; 44(1): 301-307.-DOI: https://doi.org/10.1007/s10143-019-01234-w.
Riche M., Marijon P., Amelot A., et al. Severity, timeline, and management of complications after stereotactic brain biopsy. J Neurosurg. 2021; 136(3): 867-876.-DOI: https://doi.org/10.3171/2021.3.JNS21134.
Daly M.J., Siewerdsen J.H., Moseley D.J., et al. Intraoperative cone-beam CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm prototype. Med Phys. 2006; 33(10): 3767-80.-DOI: https://doi.org/10.1118/1.2349687.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025
