MOLECULAR ASPECTS OF ANGIOGENESIS IN BRAIN GLIOBLASTOMAS
PDF (Русский)

Keywords

BRAIN GLIOMAS
HYPOXIA
ANGIOGENESIS
GLIOMA STEM CELLS
VASCULAR ENDOTHELIAL GROWTH FACTOR
ANTIANGIOGENIC THERAPY
HYPOXIA-INDUCIBLE FACTOR 1

How to Cite

Byvaltsev, V., Stepanov, I., Belykh, Y., & Yarullina, A. (2017). MOLECULAR ASPECTS OF ANGIOGENESIS IN BRAIN GLIOBLASTOMAS. Voprosy Onkologii, 63(1), 19–27. https://doi.org/10.37469/0507-3758-2017-63-1-19-27

Abstract

It is known that angiogenesis plays a critical role in the growth and progression of brain gliomas. Inducing factor in neoangiogenesis are changes primarily occur within the intra-tumoral events: changing the structure of the microvasculature of tumor tissue, increased hypoxia adaptation of tumor cells and the synthesis of angiogenic factors, cell growth. Due to the location of abnormal blood vessels in the tumor tissue generated chaotic flow of blood, which leads to severe hypoxia - as a key factor in inducing the angiogenesis process. Hypoxia-inducible factor 1 (HIF-1) is the main molecule that regulates the growth and progression of glial tumors. Glioma cells, with their inherent properties of stem cells actively synthesized HIF-1. This population of cells called - “glioma stem cells” inducing synthesis of vascular endothelial growth factor (VEGF). It VEGF is central to the process of angiogenesis. A promising area of targeted therapy of brain gliomas is the anti-angiogenic therapy. Applications, both direct and indirect angiogenesis inhibitors, significantly improved the prognosis of patients with glial brain tumors. Undoubtedly an integrated approach to the study of microvascular disturbances, hypoxia, biology and cell behavior of “glioma stem cells” and the role of various factors of cell growth in the tumorigenesis of brain gliomas of the brain allows us to develop new and effective methods of diagnosis and treatment of this disease in the near future.
https://doi.org/10.37469/0507-3758-2017-63-1-19-27
PDF (Русский)

References

Коновалов А.Н., А.А. Потапов, В.А. Лошаков и др. Стандарты, рекомендации и опции в лечении глиальных опухолей головного мозга у взрослых // Журнал вопросы нейрохирургии им. Н.Н. Бурденко. – 2006. – No2. – С.3-1.

Albani P. Dell’ stem cell markers in gliomas // Neuro-chemical Research. –2008. – Vol.33. – P.2407–2415.

Baeriswyl V., Christofori G. The angiogenic switch in carcinogenesis // Seminars in Cancer Biology. – 2009. – Vol.19. – P.329–337.

Baluk P., Hashizume H. Cellular abnormalities of blood vessels as targets in cancer // Current opinion in Genetics and Development. – 2005. – Vol.15. –P.102–111.

Beniashvili D.S., Anisimov V.N. Morphology of experimentally induced tumors of the sympathetic nervous system in rats // Experimental and Toxicologic Pathology. – 2004.

– Vol.56. – P.53–58.

Bergers G., Benjamin L.E. Tumorigenesis and the angiogenic switch // Nature Reviews Cancer. – 2013. – Vol.3. – P.401–410.

Blouw B., Song H., Tihan T. et al. The hypoxic response of tumors is dependent on their microenvironment // Cancer Cell. – 2003. – Vol.4. – P.133–146.

Bulnes S., Bengoetxea H., Ortuzar N. et al. Endogenous experimental glioma model, links between glioma stem cells and angiogenesis // Glioma—Exploring Its Biology and Practical Relevance. – «Intech». – 2011.

Bulnes S., Garc ́ıa-Blanco A ́., Bengoetxea H. et al. Glial stem cells and their relationship with tumour angiogenesis process // Revista de Neurologia.–2011. – Vol.52. – P.743–750.

Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases // Nature. – 2010. – Vol.407. – P.249-257.

Dvorak H.F. Discovery of vascular permeability factor (VPF) // Experimental Cell Research. – 2006. – Vol.312. – P.522–526.

Ferrara N. The biology of VeGF and its receptors // Nature Medicine. – 2003. – Vol.9. – P.669–676.

Ferrara N. Vascular endothelial growth factor: basic science and clinical progress // Endocrine Reviews. – 2004. – Vol.25. – P.581–611.

Ferrara N. The role of VeGF in the regulation of physiological and pathological angiogenesis // EXS. – 2005. – Vol.94. – P.209–231.

Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action // Molecular Biology of the Cell. – 2010. – Vol.21. – P.687–690.

Folkins C., Shaked Y., Man S. et al. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogen- esis via vascular endothelial growth factor and stromal-derived factor 1 // Cancer Research. – 2009. – Vol.69. –P.7243–7251.

Folkman J., Angiogenesis // Annual Review of Medicine. – 2006. – Vol.5. –P.1–18.

Grunewald F.S., Prota A.E., Giese A. et al. Structure-function analysis of VeGF receptor activation and the role of coreceptors in angiogenic signaling // Biochimica et Biophysica Acta. – 2010. – Vol.18. – P.567–580.

Hadjipanayis C.G., Van Meir E.G. Brain cancer propagating cells: biology, genetics and targeted therapies // Trends in Molecular Medicine. – 2009. – Vol.15. – P.519–530.

Hashizume H., Baluk P., Morikawa S. et al. Openings between defective endothelial cells explain tumor vessel leakiness // American Journal of Pathology. – 2000. – Vol.156. – P.1363–1380.

Helmlinger J.M., Li Z., Lathia J.D. Hypoxia inducible fac- tors in cancer stem cells // British Journal of Cancer. – 2010. – Vol.102. – P.789–795.

Holash, J., Maisonpierre, P.C., Compton D. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietinsand VeGF // Science. – 1999. – Vol.284. – P.1994–1998.

Jagannathan J., Prevedello D. М., Aaron S. et al. Cellular signaling molecules as therapeutic targets in glioblastoma multiforme // Neurosurg. Focus. – 2006. – Vol.20. – No4. – P.4-9.

Jensen R.L. Hypoxia in the tumorigenesis of gliomas and as a potential target for therapeutic measures // Neurosurgical Focus. – Vol.20. – р. e24.

Jin K.L., Mao X.O., Nagayama T. et al. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1α by global ischemia in rat brain // Neuroscience. – 2000. – Vol.99. – P.577–585.

Jin K., Zhu Y., Sun Y. et al. Vascular endothelial growth factor (VeGF) stimulates neurogenesis in vitro and in vivo // Proceedings of the National Academy of Sciences of the United states of America. – 2002. – Vol.99. –P.11946–11950.

Kaur B., Khwaja F.W., Severson E.A. et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis // Neuro-Oncology. – 2005. – Vol.7. – P.134–153.

Ke L.D., Shi Y.X., Im S.A. et al. The relevance of cell proliferation, vascular endothelial growth factor, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell lines // Clinical Cancer Research. – 2000. – Vol.6. – P.2562–2572.

Li Z., Bao S., Wu Q. et al. Hypoxia-inducible factors regulate tumourigenic capacity of glioma stem cells // Cancer Cell. – 2009. – Vol.15. – P.501–513.

Marti H.J.H., Bernaudin M., Bellail A. et al. Hypoxia induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia // American Journal of Pathology. – 2000. – Vol.156. –р.965–976.

Ment L.R., Stewart W.B., Fronc R. et al. Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain // Developmental Brain Research. – 1997. – Vol.100. – P.52–61.

Mikkelsen T., Reardon D.A. Antiangiogenic therapy for glioblastoma: new directions // the Angiogenesis Foundation. – 2010. – P.1-5.

Plate, K.H. Mechanisms of angiogenesis in the brain // Journal of Neuropathology and Experimental Neurology. – 1999. – Vol.58. – P.313–320.

Popescu A.M., Purcaru S.O., Stoleru B. et al. Angiogenesis and vascular endothelial growth factor in malignant gliomas // Current health sciences journal. – 2013. – Vol.39. – n1.– P. 5-10.

Risau W. Mechanisms of angiogenesis // Nature.–Vol.38. – р.671–674.

Rosenstein J.M., Krum J.M. New roles for VeGF in nervous tissue—beyond blood vessels // Experimental Neurology. – 2004. – Vol.187. – n2. – P.246–253.

Schiffer D., Annovazzi L., Caldera V. On the origin and growth of gliomas // Anticancer Research. – 2010. – Vol.30. – P.1977–1998.

Semenza G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics // Oncogene. – 2010. – Vol.29. – р.625–634.

Siegelin M. D., Raskett C. M., Gilbert C. A. et al. Sorafenib exerts anti-glioma activity in vitro and in vivo // Neurosci Lett. – 2010. – Vol. 478. – n.3. – P.165-170.

Storkebaum E., Lambrechts D., Carmeliet P. VeGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection // Bioessays. –2004. – Vol.26. – P.943–954.

Tate M.C., Aghi M.K. Biology of Angiogenesis and Invasion in Glioma // Neurotherapeutics. – 2009. – Vol.6. – P.447–457.

Vajkoczy P., Farhadi M., Gaumann A. et al. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VeGF, VeGF receptor-2, and angiopoietin-2 // the Journal of Clinical Investigation. – 2002. – Vol.109. – P.777–785.

Wang H., Xu t., Jiang Y. et al. the Challenges and the Promise of Molecular targeted therapy in Malignant Gliomas // Neoplasia. – 2015. – Vol.17. – P.239-255.

Wenger R.H., Gassmann M. Oxygen(es) and the hypoxia-inducible factor // Oncogene. – 2011. – Vol.31. – р.624– 634.

Wong M. L. H., Prawira A., Kaye A.H. Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas // Journal of Clinical Neuroscience. – Vol.16. – р.1119–1130.

Yancopoulos G.D., Davis S., Gale N. W. Vascular-specific growth factors and blood vessel formation // Nature. – Vol. 40. – р.242–248.

Yang M. H., Wu K.J. TWIST activation by hypoxia induc- iblefactor-1 (HIF-1): implications in metastasis and development // Cell Cycle. – 2008. – Vol.7. – P.2090–2096.

Zagzag D., Friedlander D.R., Margolis B. et al. Molecular events implicated in brain tumor angiogenesis and invasion // Pediatric Neurosurgery. – 2000. – Vol.33. – P.49–55.

Zeppernick F., Ahmadi R., Campos B. et al. Stem cell marker CD133 affects clinical outcome in glioma patients // Clinical Cancer Research. – 2008. – Vol.14. – P.123–129.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2017