Abstract
Introduction. Ovarian granulosa cell tumors (GCTs), despite their indolent nature, have a high relapse rate and associated mortality. Thus, the task of modern laboratory diagnostics to timely detect GCT is still unresolved, which negatively affects subsequent treatment options and prognosis.
Aim. To review the data of modern literature on the diagnosis of ovarian granulosa cell tumors.
Material and Methods. Articles were selected from Scopus, Web of Science, and PubMed. The review included only articles in English from the last five years and only on ovarian granulosa cell tumors.
Results. The gold standard for modern laboratory diagnosis of GCTs of the ovaries is immunohistochemical studies, as well as liquid biopsy (primarily using polymerase chain reaction and next-generation sequencing to detect circulating tumor cells (CTCs) and DNA). Molecular genetic analysis of FOXL2 C.402>G (C134 W) serves as a necessary supplement to these methods. All of these methods are mainly aimed at determining the risk of recurrence of adult-type GCTs of the ovaries.
Conclusion. The most important task in the diagnosis of GCTs of the ovaries, which is still unresolved, is the identification of patients at high risk of recurrence. The gold standard for modern diagnosis is immunohistochemical examination. Methods such as liquid biopsy (CTCs and DNA) and molecular genetic analysis of FOXL2 C.402>G (C134 W) serve as necessary supplements. It is expedient to continue innovative research to improve the quality of diagnosis of this pathology, which will allow for optimizing further treatment tactics and prognosis for patients with adult-type granulosa cell tumor of the ovary (AGCT).
References
Jobrack AD, Goel S, Cotlar AM. Granular cell tumor: report of 13 cases in a veterans administration hospital. Mil Med. 2018;183(9–10):e589–93. doi:10.1093/milmed/usx237.
Al Harbi R, McNeish IA, El-Bahrawy M. Ovarian sex cord-stromal tumors: an update on clinical features, molecular changes, and management. Int J Gynecol Cancer. 2021;31(2):161–8. doi:10.1136/ijgc-2020-002018.
Roze J, Monroe G, Kutzera J, et al. Whole genome analysis of ovarian granulosa cell tumors reveals tumor heterogeneity and a high-grade TP53-specific subgroup. Cancers (Basel). 2020;12(5):1308. doi:10.3390/cancers12051308.
Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;359(6378):926–30. doi:10.1126/science.aar3247.
Lou E, Vogel RI, Teoh D, et al. Assessment of circulating tumor cells as a predictive biomarker of histology in women with suspected ovarian cancer. Laboratory Medicine. 2018;49(2):134–9. doi:10.1093/labmed/lmx084.
Färkkilä A, Haltia U-M, Tapper J, et al. Pathogenesis and treatment of adult-type granulosa cell tumor of the ovary. Ann Med. 2017;49(5):435–47. doi:10.1080/07853890.2017.1294760.
Pilsworth JA, Cochrane DR, Neilson SJ, et al. Adult‐type granulosa cell tumor of the ovary: a FOXL2-centric disease. J Pathol Clin Res. 2021;7(3):243–52. doi:10.1002/cjp2.198.
Mathieson W, Thomas GA. Why formalin-fixed, paraffin-embedded biospecimens must be used in genomic medicine: an evidence-based review and conclusion. J Histochem Cytochem. 2020;68(8):543–52. doi:10.1369/0022155420945050.
Bardelli A, Pantel K. liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31(2):172–9. doi: 10.1016/j.ccell.2017.01.002.
Haltia U-M, Pihlajoki M, Andersson N, et al. Functional profiling of FSH and estradiol in ovarian granulosa cell tumors. Journal of the Endocrine Society. 2020;4(4). doi: 10.1210/jendso/bvaa034.
Arezzo F, Loizzi V, La Forgia D, et al. The role of ultrasound guided sampling procedures in the diagnosis of pelvic masses: a narrative review of the literature. Diagnostics (Basel). 2021;11(12):2204. doi:10.3390/diagnostics11122204.
Zhou AG, Levinson KL, Rosenthal DL, et al. Performance of ovarian cyst fluid fine-needle aspiration cytology. Cancer Cytopathol. 2018;126(2):112–21. doi:10.1002/cncy.21911.
Aswathi Krishnan M., Sheeja S., Lillykutty Pothen. Role of FNAC in the diagnosis of ovarian tumours. Oncology and Radiotherapy. 2021;15(5): 2933.
Nagamine K, Kondo J, Kaneshiro R, et al. Ovarian needle aspiration in the diagnosis and management of ovarian masses. Journal of Gynecol Oncol. 2017;28(4). doi:10.3802/jgo.2017.28.e40.
Mondelo-Macía P, García-González J, León-Mateos L, et al. Current status and future perspectives of liquid biopsy in small cell lung cancer. Biomedicines. 2021;9(1):48. doi:10.3390/biomedicines9010048.
Rakhit CP, Trigg RM, Le Quesne J, et al. Early detection of pre-malignant lesions in a KRASG12D-driven mouse lung cancer model by monitoring circulating free DNA. Dis Model Mech. 2019;12(2). doi:10.1242/dmm.036863.
Asante D-B, Calapre L, Ziman M, et al. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 2020;468:59–71. doi:10.1016/j.canlet.2019.10.014.
Obermayr E, Maritschnegg E, Agreiter C, et al. Efficient leukocyte depletion by a novel microfluidic platform enables the molecular detection and characterization of circulating tumor cells. Oncotarget. 2017;9(1):812–23. doi:10.18632/oncotarget.22549.
Guo Y-X, Neoh KH, Chang X-H, et al. Diagnostic value of HE4+ circulating tumor cells in patients with suspicious ovarian cancer. Oncotarget. 2018;9(7):7522–33. doi:10.18632/oncotarget.23943.
Kim M, Suh DH, Choi JY, et al. Post-debulking circulating tumor cell as a poor prognostic marker in advanced stage ovarian cancer: A prospective observational study. Medicine (Baltimore). 2019;98(20):e15354. doi:10.1097/MD.0000000000015354.
Po JW, Roohullah A, Lynch D, et al. Improved ovarian cancer EMT-CTC isolation by immunomagnetic targeting of epithelial EpCAM and mesenchymal N-cadherin. J. Circ. Biomarkers. 2018;7:184945441878261. doi:10.1177/1849454418782617.
Chebouti I, Kasimir-Bauer S, Buderath P, et al. EMT-like circulating tumor cells in ovarian cancer patients are enriched by platinum-based chemotherapy. Oncotarget. 2017;8(30):48820–31. doi:10.18632/oncotarget.16179.
Zhang X, Li H, Yu X, et al. Analysis of circulating tumor cells in ovarian cancer and their clinical value as a biomarker. Cell Physiol Biochem. 2018;48(5):19831994. doi:10.1159/000492521.
Park YR, Kim YM, Lee SW, et al. Optimization to detect TP53 mutations in circulating cell-free tumor DNA from patients with serous epithelial ovarian cancer. Obstet Gynecol Sci. 2018;61(3):328336. doi:10.5468/ogs.2018.61.3.328.
Cargnin S, Canonico PL, Genazzani AA, et al. Quantitative analysis of circulating cell-free DNA for correlation with lung cancer survival: a systematic review and meta-analysis. J Thorac Oncol. 2017;12(1):4353. doi:10.1016/j.jtho.2016.08.002.
Lu Y, Li L. the prognostic value of circulating tumor DNA in ovarian cancer: a meta-analysis. Technology. Cancer Res Treat. 2021;20:153303382110437. doi:10.1177/15330338211043784.
Li H, Jing C, Wu J, et al. Circulating tumor DNA detection: A potential tool for colorectal cancer management (Review). Oncol. Lett. 2019. doi:10.3892/ol.2018.9794.
Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J. 2018;16:370378. doi:10.1016/j.csbj.2018.10.002.
O’Leary B, Hrebien S, Beaney M, et al. Comparison of BEAMing and droplet digital PCR for circulating tumor DNA analysis. Clin Chem. 2019;65(11):1405–13. doi:10.1373/clinchem.2019.305805.
Esposito Abate R, Pasquale R, Fenizia F, et al. The role of circulating free DNA in the management of NSCLC. Expert Rev Anticancer Ther. 2019;19(1):1928. doi:10.1080/14737140.2019.1548938.
Lin KK, Harrell MI, Oza AM, et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the parp inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 2019;9(2):210–9. doi:10.1158/2159-8290.cd-18-0715.
Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017;9(403). doi:10.1126/scitranslmed.aan2415.
Sondka Z, Bamford S, Cole CG, et al. The COSMIC cancer gene census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696705. doi:10.1038/s41568-018-0060-1.
Kraus F, Dremaux J, Altakfi W, et al. FOXL2 homozygous genotype and chromosome instability are associated with recurrence in adult granulosa cell tumors of the ovary. Oncotarget. 2020;11(4):419–28. doi:10.18632/oncotarget.27447.
Da Cruz Paula A, da Silva EM, Segura SE, et al. Genomic profiling of primary and recurrent adult granulosa cell tumors of the ovary. Mod Pathol. 2020;33(8):16061617. doi:10.1038/s41379-020-0514-3.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2023