Tumor-Infiltrating Lymphocytes as a Target for Immunotherapy in Breast Cancer
##article.numberofdownloads## 88
##article.numberofviews## 217
pdf (Русский)

Keywords

review of studies of tumor-infiltrating lymphocytes
breast cancer
immunotherapy
immune control points
immune checkpoints

How to Cite

Mnikhovich, M. V., Borisov, D. A., Timofeev, R. G., Agafonova, Y. S., Erofeeva, L. M., Bezuglova, T. V., & Shiripenko, I. A. (2024). Tumor-Infiltrating Lymphocytes as a Target for Immunotherapy in Breast Cancer. Voprosy Onkologii, 70(3), 424–432. https://doi.org/10.37469/0507-3758-2024-70-3-424-432

Abstract

The article discussed the use of tumor-infiltrating lymphocytes (TILs) in clinical practice and highlighted the latest research in the search for promising ways to treat cancer patients, using breast cancer with different levels of lymphocyte infiltration as an example. One of the promising methods of tumour therapy today is immunotherapy, which is based on targeting immune control "points" or checkpoints, a system of inhibitory mechanisms that regulate the activation of the immune response. By acting on checkpoints, tumour cells prevent the activation of tumour-specific lymphocytes and thus become resistant to the action of the immune system. The goal of immunotherapy is to block the interaction of immune checkpoints and their ligands expressed by tumor cells and their microenvironment, leading to reactivation of the anti-tumor immune response. In this context, studies aimed at identifying molecular targets are currently underway. The main target of these studies are tumor-infiltrating lymphocytes. A literature search of Scopus, Web of Science, Medline, PubMed, CyberLeninka, RSCI and CNKI databases was conducted to prepare the review. The analysis used sources indexed in the Scopus, Web of Science and PubMed databases; 70 % of papers published in the last 5 years. 40 sources were used to write this review.

https://doi.org/10.37469/0507-3758-2024-70-3-424-432
##article.numberofdownloads## 88
##article.numberofviews## 217
pdf (Русский)

References

Annaratone L., Cascardi E., Vissio E., et al. The multifaceted nature of tumor microenvironment in breast carcinomas. Pathobiology. 2020; 87(2): 125-142.-DOI: https://doi.org/10.1159/000507055.

Zhao Y., Shao Q., Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 2020; 17: 27-35.-DOI: https://doi.org/10.1038/s41423-019-0344-8.

Miller B.C., Sen D.R., Al Abosy R., et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019; 20(3): 326-336.-DOI: https://doi.org/10.1038/s41590-019-0312-6.

Dolina J.S., Van Braeckel-Budimir N., Thomas G.D., Salek-Ardakani S. CD8+ T cell exhaustion in cancer. Front Immunol. 2021; 12:715234.-DOI: https://doi.org/10.3389/fimmu.2021.715234.

De Guillebon E., Dardenne A., Saldmann A., et al. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. Int J Cancer. 2020; 147(6): 1509-1518. -DOI: https://doi.org/10.1002/ijc.32889.

Zhang Z., Liu S., Zhang B., et al. T cell dysfunction and ex-haustion in cancer. Front Cell Dev Biol. 2020; 8: 17.-DOI: https://doi.org/10.3389/fcell.2020.00017.

Hendry S., Salgado R., Gevaert T., et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immunooncology Biomarkers Working Group: part 1: assessing the host immune response, tils in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol. 2017; 24(5): 235-251.-DOI: https://doi.org/10.1097/PAP.0000000000000162.

Zheng L., Qin S., Si W., et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. 2021; 374(6574): abe6474.-DOI: https://doi.org/10.1126/science.abe6474.

Bagaev A., Kotlov N., Nomie K., et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell. 2021; 39(6): 845-865.e7.-DOI: https://doi.org/10.1016/j.ccell.2021.04.014.

Kos Z., Roblin E., Kim R.S., et al. Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. NPJ Breast Cancer. 2020; 6: 17.-DOI: https://doi.org/10.1038/s41523-020-0156-0.

Ruan M., Tian T., Rao J., et al. Predictive value of tumor-infiltrating lymphocytes to pathological complete response in neoadjuvant treated triple-negative breast cancers. Diagn Pathol. 2018; 13: 66.-DOI: https://doi.org/10.1186/s13000-018-0743-7.

Foulkes W.D., Smith I.E., Reis-Filho J.S. Triple-negative breast cancer. N Engl J Med. 2010; 363(20): 1938-48.-DOI: https://doi.org/10.1056/NEJMra1001389.

Lin Y., Fu F., Lin S., et al. A nomogram prediction for the survival of patients with triple negative breast cancer. Oncotarget. 2018; 9(63): 32108-32118.-DOI: https://doi.org/10.18632/oncotarget.24964.

Karn T., Jiang T., Hatzis C., et al. Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncol. 2017; 3(12): 1707-1711.-DOI: https://doi.org/10.1001/jamaoncol.2017.2140.

Adams S., Schmid P., Rugo H.S., et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019; 30(3): 397-404.-DOI: https://doi.org/10.1093/annonc/mdy517.

Emens L.A., Molinero L., Loi S., et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study. J Natl Cancer Inst. 2021; 113(8): 1005-1016.-DOI: https://doi.org/10.1093/jnci/djab004.

Loi S., Schmid P., Aktan G., et al. Relationship between tumor infiltrating lymphocytes (TILs) and response to pembrolizumab (pembro)+chemotherapy (CT) as neoadjuvant treatment (NAT) for triple-negative breast cancer (TNBC): Phase Ib KEYNOTE-173 trial. Ann Oncol. 2019; 30 :iii2.-DOI: https://doi.org/10.1093/annonc/mdz095.003.

Cortes J., Rugo H.S., Cescon D.W., et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med. 2022; 387: 217-226.-DOI: https://doi.org/10.1056/NEJMoa2202809.

Winer E.P., Lipatov O., Im S.A., et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021; 22(4): 499-511.-DOI: https://doi.org/10.1016/S1470-2045(20)30754-3.

Schmid P., Rugo H.S., Adams S., et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020; 21(1): 44-59.-DOI: https://doi.org/10.1016/S1470-2045(19)30689-8.

Mittendorf E.A., Zhang H., Barrios C.H., et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet. 2020; 396: 1090-1100.-DOI: https://doi.org/10.1016/S0140-6736(20)31953-X.

Schmid P., Cortes J., Pusztai L., et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020; 382: 810-821.-DOI: https://doi.org/10.1056/NEJMoa1910549.

Denkert C., von Minckwitz G., Darb-Esfahani S., et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018; 19(1): 40-50.-DOI: https://doi.org/10.1016/S1470-2045(17)30904-X.

Kwan M.L., Kushi L.H., Weltzien E., et al. Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Research. 2009; 11(3).-DOI: https://doi.org/10.1186/bcr2261.

Luen S.J., Salgado R., Fox S., et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 2017; 18(1): 52-62.-DOI: https://doi.org/10.1016/S1470-2045(16)30631-3.

Loi S., Giobbie-Hurder A., Gombos A., et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncol. 2019; 20(3): 383-393.-DOI: https://doi.org/10.1016/S1470-2045(18)30812-X.

Goldberg J., Pastorello R.G., Vallius T., et al. The Immunology of hormone receptor positive breast cancer. Front Immunol. 2021; 12: 674192.-DOI: https://doi.org/10.3389/fimmu.2021.674192.

Rugo H.S., Delord J.P., Im S.A., et al. Safety and antitumor activity of pembrolizumab in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. Clin Cancer Res. 2018; 24(12): 2804-2811.-DOI: https://doi.org/10.1158/1078-0432.

Shah A.N., Flaum L., Helenowski I., et al. Phase II study of pembrolizumab and capecitabine for triple negative and hormone receptor-positive, HER2-negative endocrine-refractory metastatic breast cancer. J Immunother Cancer. 2020; 8(1): e000173.-DOI: https://doi.org/10.1136/jitc-2019-000173.

Nanda R., Liu M.C., Yau C., et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol. 2020; 6(5): 676-684.-DOI: https://doi.org/10.1001/jamaoncol.2019.6650.

van der Leun A.M., Thommen D.S., Schumacher T.N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020; 20(4): 218-232.-DOI: https://doi.org/10.1038/s41568-019-0235-4.

Andreatta M., Corria-Osorio J., Müller S., et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat Commun. 2021; 12(1): 2965.-DOI: https://doi.org/10.1038/s41467-021-23324-4.

Kirtane K., Elmariah H., Chung C.H., Abate-Daga D. Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead. Journal for ImmunoTherapy of Cancer. 2021; 9(7).-DOI: https://doi.org/10.1136/jitc-2021-002723.

Morotti M., Albukhari A., Alsaadi A., et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br J Cancer. 2021; 124:1759-1776.-DOI: https://doi.org/10.1038/s41416-021-01353-6.

Owen K., Ghaly R., Shohdy K.S., et al. Lymphodepleting chemotherapy practices and effect on safety and efficacy outcomes in patients with solid tumours undergoing T cell receptor-engineered T cell (TCR-T) Therapy: a systematic review and meta-analysis. Cancer Immunol Immunother. 2023; 72: 805-814.-DOI: https://doi.org/10.1007/s00262-022-03287-1.

Lin H., Cheng J., Mu W., et al. Advances in universal CAR-T cell therapy. Front Immunol. 2021; 12: 744823.-DOI: https://doi.org/10.3389/fimmu.2021.744823.

Yilmaz A., Cui H., Caligiuri M.A., et al. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol. 2020; 13(1).-DOI: https://doi.org/10.1186/s13045-020-00998-9.

Zhang L., Meng Y., Feng X., et al. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res. 2020; 10.-DOI: https://doi.org/10.1186/s40364-022-00364-6.

Reuben A., Spencer C.N., Prieto P.A., et al. Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ Genom Med. 2017; 2: 10.-DOI: https://doi.org/10.1038/s41525-017-0013-8.

Angelova M., Mlecnik B., Vasaturo A., et al. Evolution of metastases in space and time under immune selection. Cell. 2018; 175(3): 751-765.е16.-DOI: https://doi.org/10.1016/j.cell.2018.09.018.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024