Intraoperative Sonographically Guided Versus 5-Aminolevulinic Acid Fluorescence Guided Resection of Diffuse Contrast-Enhancing Gliomas and Brain Metastases: Protocol of Randomized, Noninferiority Trial
pdf (Русский)

Keywords

high-grade glioma
metastasis
sonography
ultrasound
fluorescence
5-aminolevulinic acid
extent of resection

How to Cite

Dmitriev, A. Y., Dashyan, V. G., Prirodov, A. V., Hamidova, L. T., & Saidova, K. I. (2023). Intraoperative Sonographically Guided Versus 5-Aminolevulinic Acid Fluorescence Guided Resection of Diffuse Contrast-Enhancing Gliomas and Brain Metastases: Protocol of Randomized, Noninferiority Trial. Voprosy Onkologii, 69(5), 844–849. https://doi.org/10.37469/0507-3758-2023-69-5-844-849

Abstract

Introduction. Fluorescence with 5-aminolevulinic acid is usually used for intraoperative assessment of the extent of contrast-enhancing glioma and cerebral metastases resection. Sonography is less frequently used due to its reduced specificity during tumor removal and the inconvenience of shifting focus from the surgical field to the ultrasound monitor. However, the advantage of ultrasound over fluorescence is the ability to detect tumors hidden within normal brain tissue. Currently, there are no published randomized trials comparing the effectiveness of fluorescence and ultrasound in the intraoperative assessment of the extent of brain tumor removal.

Materials and methods. We have planned a randomized single-center, blinded outcome study in 134 patients with two arms and a participant distribution of 1:1. The primary outcome is the extent of glioma or metastasis resection (yes or no). The hypothesis of the trial is that intraoperative sonography is not inferior to fluorescence in intraoperatively assessing the extent of intracranial tumor resections. Block stratified randomization has been performed, with the stratifying variable as the location of the tumor near the motor or speech area of the brain. Patients with single supratentorial contrast-enhancing gliomas or metastases aged 18-79 years with a Karnofsky performance status index of 60-100 % are eligible for randomization. In the study group, sonography will be used for intraoperative assessment of the extent of tumor resection, while in the control group, fluorescence with 5-aminolevulinic acid will be used. Intraoperative magnetic resonance imaging is not planned.

Conclusion. If the primary hypothesis is confirmed, intraoperative sonography may become a worthy alternative to fluorescent-guided surgery based on 5-aminolevulinic acid. The trial is registered with the ClinicalTrials.gov registry as NCT05475522 (SONOFLUO).

https://doi.org/10.37469/0507-3758-2023-69-5-844-849
pdf (Русский)

References

Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231-51. https://doi.org/10.1093/neuonc/noab106.

Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963-72. https://doi.org/10.1200/JCO.2009.26.3541.

Silbergeld DL, Chicoine MR. Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg. 1997;86(3):525-531. https://doi.org/10.3171/jns.1997.86.3.0525.

Le Rhun E, Guckenberger M, Smits M, et al. EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours. Ann Oncol. 2021;32(11):1332-47. https://doi.org/10.1016/j.annonc.2021.07.016.

Потапов А.А., Горяйнов С.А., Охлопков В.А., и др. Клинические рекомендации по использованию интраоперационной флуоресцентной диагностики в хирургии опухолей головного мозга. Вопросы нейрохирургии. 2015;79(5):91‑101 [Potapov AA, Goriainov SA, Okhlopkov VA, et al. Clinical guidelines for the use of intraoperative fluorescence diagnosis in brain tumor. Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko. 2015;79(5):91‑101 (In Russ., In Eng.)]. https://doi.org/10.17116/neiro201579591-101.

Weller M, van den Bent M, Preusser M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170-186. https://doi.org/10.1038/s41571-020-00447-z.

Stummer W, Pichlmeier U, Meinel T, et al. Fluorescenceguided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392-401. https://doi.org/10.1016/S1470-2045(06)70665-9.

Ma R, Watts C. Selective 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in gliomas. Acta Neurochir. 2016;158(10):1935-1941. https://doi.org/10.1007/s00701-016-2897-y.

Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery. 2015;77(5):663-73. https://doi.org/10.1227/NEU.0000000000000929.

Rygh OM, Selbekk T, Torp SH, et al. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir (Wien). 2008;150(10):1033-1042. https://doi.org/10.1007/s00701-008-0017-3.

Policicchio D, Doda A, Sgaramella E, et al. Ultrasound-guided brain surgery: echographic visibility of different pathologies and surgical applications in neurosurgical routine. Acta Neurochir. 2018;160(6):1175-1185. https://doi.org/10.1007/s00701-018-3532-x.

Prada F, Perin A, Martegani A, et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery. 2014;74(5):542-552. https://doi.org/10.1227/NEU.0000000000000301.

Wu JS, Gong X, Song YY, et al. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurgery. 2014;61(Suppl_1):145-54. https://doi.org/10.1227/NEU.0000000000000372.

Sanai N, Polley M, McDermott M, et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3-8. https://doi.org/10.3171/2011.2.jns10998.

Medical Research Council. Aids to the examination of the peripheral nervous system (Memorandum No. 45). London: H.M.S.O. 1976:1-64.

Hendrix P, Senger S, Simgen A, et al. Preoperative rTMS language mapping in speech-eloquent brain lesions resected under general anesthesia: a pair-matched cohort study. World Neurosurg. 2017;100:425-433. https://doi.org/10.1016/j.wneu.2017.01.041.

Karnofsky DA, Abelmann WH, Craver LF, et al. The use of the nitrogen mustards in the palliative treatment of carcinoma with particular reference to bronchogenic carcinoma. Cancer. 1948:634-56. https://doi.org/10.1002/1097-0142(194811)1:4%3C634::AID-CNCR2820010410%3E3.0.CO;2-L.

Mahboob S, McPhillips R, Qiu Z. Intraoperative ultrasound-guided resection of gliomas: a meta-analysis and review of the literature. World Neurosurg. 2016;92:255-63. https://doi.org/10.1016/j.wneu.2016.05.007.

Seidel K, Beck J, Stieglitz L, et al. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2013;118(2):287-96. https://doi.org/10.3171/2012.10.JNS12895.

Selbekk T, Jakola AS, Solheim O, et al. Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artifacts for improved resection control. Acta Neurochir. 2013;155(6):973-80. https://doi.org/10.1007/s00701-013-1647-7.

Lau D, Hervey-Jumper SL, Chang S. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg. 2016;124(5):1300-9. https://doi.org/10.3171/2015.5.JNS1577.

Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459-66. https://doi.org/10.1016/S1470-2045(09)70025-7.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023