Development of method for creating tumor xenograft model with porous metal scaffold
pdf (Русский)

Keywords

A549 cell culture
subcutaneous xenografts
athymic mice
tumor model
scaffolds
Matrigel

How to Cite

Protasova, T., Goncharova, A., Lukbanova, E., Volovik, V., Mindar, M., Khodakova, D., Volkova, A., Zaikina, E., Chapek, S., Karnaukhov, N., Potemkin, D., Vasilchenko, N., & Maksimov, A. (2022). Development of method for creating tumor xenograft model with porous metal scaffold. Voprosy Onkologii, 67(1), 127–133. https://doi.org/10.37469/0507-3758-2021-67-1-127-133

Abstract

Aim of the study – the development of a method for obtaining a tumor xenograft model by a subcutaneous transplantation of a porous metal scaffold populated with cultured human lung carcinoma cells.

Material and methods. The study included 14 athymic male Balb c/nude mice aged 8-90 weeks, weighing 20-24 g. All animals received injections with cultured human A549 lung carcinoma cells subcutaneously into the right anterolateral area of the back. In animals of the main group (gr.1, n=4), scaffolds with a pore diameter of 0.5 mm made of titanium-aluminum-vanadium alloy using an industrial 3D printer served as carriers of tumor cells. Scaffolds were seeded with 3 million A549 culture cells, and were implanted into the recipient animals after the 7-day incubation. Results were compared with the results of the tumor culture transplantation with Matrigel (100 mcL) in two groups of animals with varying cell suspension dosages: the maximum vaccination dose for in vivo (10×106 cells per mouse, gr.2, n=5) and half the maximum dose (5×106 respectively, gr.3, n=5). Then, the dynamics of tumor growth in the groups of experimental mice was monitored for 55 days: xenograft volumes were calculated using the Shrek’s formula for an ellipsoid. At the end of the experiment, the animals were euthanized by cervical dislocation.

Results. Monitoring of the dynamics of xenograft volumes demonstrated the maximal values in mice with implanted scaffolds. The slowest xenograft growth was registered in animals with the maximum vaccination dose of tumor cells with Matrigel. Histological study showed that tumor material obtained from all animals corresponded to A549 lung carcinoma.

Conclusions. Porous metal scaffolds, previously incubated with A549 culture cells and implanted subcutaneously in athymic Balb c/nude mice, allows obtaining rapidly growing xenografts with histologically confirmed correspondence to the original tumor.

https://doi.org/10.37469/0507-3758-2021-67-1-127-133
pdf (Русский)

References

Jung J., Seol H.S., Chang S. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research. Cancer Res Treat. 2018;50(1):1-10. doi:10.4143/crt.2017.307.

Кит О.И., Гончарова А.С., Ткачев С.Ю., Протасова Т.П. Методы моделирования уве-альной меланомы. Вопросы онкологии. 2019; 65(4): 498-503 [Kit O.I., Goncharova A.S., Tkachev S.Yu., Protasova T.P. Methods of modeling uveal melanoma. Questions of Oncol-ogy. 2019; 65(4): 498-503 (In Russ.)].

Spaw M., Anant S., Thomas S.M. Stromal contributions to the carcinogenic process. Mol Carcinog. 2017;56(4):1199-1213. doi:10.1002/mc.22583.

Ravi M., Ramesh A., Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol. 2017;232(10):2679-2697. doi:10.1002/jcp.25664.

Андронова Н.В., Морозова Л.Ф., Сураева Н.М. и др. Способность клеток беспигмент-ной меланомы кожи человека линии mel ibr/braf+ и ее субклона к росту у иммуноде-фицитных мышей balb/с nude при подкожной имплантации. Российский биотерапев-тический журнал. 2017; 16(2): 60-65 [Andronova N.V., Morozova L.F., Suraeva N.M. et al. The Ability of human skin cells of the Mel ibr/braf+ line and its subclone to grow in im-munodeficient BALB/C nude mice during subcutaneous implantation. Russian biotherapeu-tic journal. 2017; 16(2): 60-65. doi: 10.17650/1726-9784-2017-16-2-60-65 (In Russ.)].

Трещалина Е.М. Иммунодефицитные мыши balb/c nude и моделирование различных вариантов опухолевого роста для доклинических исследований. Российский биотера-певтический журнал. 2017; 16(2): 6-13 [Treshchalina EM. Immunodeficiency mice balb/ c nude and modeling of various variants of tumor growth for preclinical research. Russian biotherapeutic journal. 2017; 16(2): 6-13 (In Russ.)].

Takai A., Fako V., Dang H. et al. Three-dimensional Organotypic Culture Models of Human Hepatocellular Carcinoma. Sci Rep. 2016;6:21174. doi:10.1038/srep21174.

Fong E.L., Harrington D.A., Farach-Carson M.C., Yu H. Heralding a new paradigm in 3D tumor modeling. Biomaterials. 2016;108:197-213. doi:10.1016/j.biomaterials.2016.08.052.

Gomez-Roman N., Stevenson K., Gilmour L. et al. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro Oncol. 2017;19(2):229-241. doi:10.1093/neuonc/now164.

Рябая О.О., Прокофьева А.А., Хоченков Д.А. и др. Роль эпителиально-мезенхимального перехода и аутофагии в противоопухолевом ответе клеточных ли-ний меланомы на таргетное ингибирование MEK и mTOR киназ. Сибирский онколо-гический журнал. 2019; 18(3): 54–63. [Ryabaya O.O., Prokofieva A.A., Khochenkov D.A. et al. The Role of epithelial-mesenchymal transition and autophagy in the antitumor re-sponse of melanoma cell lines to targeted inhibition of MEK and mTOR kinases. Siberian cancer journal. 2019; 18(3): 54–63. doi: 10.21294/1814-4861-2019-18-3-54-63 (In Russ.)].

Wang R.M., Johnson T.D., He J. et al. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials. Biomaterials. 2017;129:98-110. doi:10.1016/j.biomaterials.2017.03.016.

Lü W.D., Sun R.F., Hu Y.R. et al. Photooxidatively crosslinked acellular tumor ex-tracellular matrices as potential tumor engineering scaffolds. Acta Biomater. 2018;71:460-473. doi:10.1016/j.actbio.2018.03.020.

Dalgliesh A.J., Parvizi M., Lopera-Higuita M. et al. Graft-specific immune tolerance is de-termined by residual antigenicity of xenogeneic extracellular matrix scaffolds. Acta Bio-mater. 2018;79:253-264. doi:10.1016/j.actbio.2018.08.016.

Karuppaiah K., Sinha J. Scaffolds in the management of massive rotator cuff tears: current concepts and literature review. EFORT Open Rev. 2019;4(9):557-566. doi:10.1302/2058-5241.4.180040.

Kuevda E.V., Gubareva E.А., Grigoriev Т.E. et al. Application of recellularized non-woven materials from collagen-enriched polylactide for creation of tissue-engineered diaphragm constructs. Sovremennye tehnologii v medicine. [Modern technologies in medicine]. 2019; 11(2): 35–43. https://doi.org/10.17691/stm2019.11.2.05.

Решетов И.В., Старцева О.И., Истранов А.Л. и др. Разработка трехмерного биосовме-стимого матрикса для задач реконструктивной хирургии. Анналы пластической, ре-конструктивной и эстетической хирургии. 2018. (3): 9-23 [Reshetov I.V., Startseva O.I., Istranov A.L. et al. Development of a three-dimensional biocompatible matrix for recon-structive surgery tasks. Annals of plastic, reconstructive and aesthetic surgery. 2018. (3): 9-23 (In Russ.)].

Андронова Н.В., Райхлин Н.Т., Трещалина Е.М. и др. Результаты изучения онкоген-ных потенций медицинских клеточных препаратов на иммунодефицитных мышах. Российский биотерапевтический журнал. 2010; 9(2): 29-33 [Andronova N.V., Raichlin N.T., Treshchalina E.M. et al. Results of studying oncogenic potencies of medical cell preparations on immunodeficient mice. Russian biotherapeutic journal. 2010; 9(2): 29-33 (In Russ.)].

Еманов А.А., Стогов М.В., Кузнецов В.П. и др. Оценка приживаемости и безопасно-сти применения оссеоинтегрированных чрескожных имплантатов из разных сплавов. Биомедицина. 2017; (4): 77-82 [Emanov A.A., Stogov M.V., Kuznetsov V.P. et al. Evalua-tion of survival and safety of osseointegrated percutaneous implants from different alloys. Biomedicina. 2017; (4): 77-82 (In Russ.)].

Большаков О.П. Дидактические и этические аспекты проведения исследований на биомоделях и на лабораторных животных. ВОЗ, 2000. Рекомендации комитетам по этике, проводящим экспертизу биомедицинских исследований. Качественная клини-ческая практика. 2002; 9: 1–15 [Bolshakov O.P. Didactic and ethical aspects of research on biomodels and laboratory animals. WHO, 2000. Recommendations to ethics committees that review biomedical research. Good clinical practice. 2002; 9: 1–15 (In Russ.)].

Workman P., Aboagye E.O., Balkwill F. et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555-1577. doi:10.1038/sj.bjc.6605642.

Михайлова Л.М., Меркулова И.Б., Ермакова Н.П. и др. Методические подходы к ис-следованию туморогенности клеточных линий и биопрепаратов на их основе при до-клинической оценке безопасности. Российский биотерапевтический журнал. 2010;9(2):13-18 [Mikhailova L.M., Merkulova I.B., Ermakova N.P. et al. Methodological approaches to the study of tumorogenicity of cell lines and biologics based on them in pre-clinical safety assessment. Rossijskij bioterapevticheskij zhurnal - Russian biotherapeutic journal. 2010;9(2):13-18 (In Russ.)].

Jiang F., Yu Q., Chu Y. et al. MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol. 2019;54(1):128-138. doi:10.3892/ijo.2018.4610.

Юркштович Т.Л., Кладиев А.А., Голуб Н.В. и др. Гидрогелевый противоопухолевый препарат. Патент № 2442686. Опубликовано: 20.02.2012. Бюл. № 5. [Yurkshtovich T. L., Kladiev A.A., Golub N.V. et al. Hydrogel antitumor drug. Patent No. 2442686. Pub-lished: 20.02.2012. Bull. No. 5 (Russ.)].

Lee G.H., Han S-B., Lee J-H. et al. Cancer Mechanobiology: Microenvironmental Sensing and Metastasis. ACS Biomater. Sci. Eng., Just Accepted Manuscript. 14 Jan 2019. doi: 10.1021/acsbiomaterials.8b01230.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021