Evaluation of the Potential of Hybrid Tri-Component Nanosystems Based on Selenium Nanoparticles, Graft Copolymers and Radachlorin for Targeted Tumor Delivery
##article.numberofdownloads## 8
##article.numberofviews## 28
pdf (Русский)

Keywords

hybrid three-component nanosystems
selenium nanoparticles
Radachlorine
photodynamic therapy
fluorescent diagnostics
tumor
mouse

How to Cite

Valueva, S. V., Panchenko, A. V., Morozova , P. Y., Semenov, A. L., Danilova, A. B., Popovich, I. G., & Kruglov, S. S. (2025). Evaluation of the Potential of Hybrid Tri-Component Nanosystems Based on Selenium Nanoparticles, Graft Copolymers and Radachlorin for Targeted Tumor Delivery. Voprosy Onkologii, 70(6), 1068–1076. https://doi.org/10.37469/0507-3758-2024-70-6-1068-1076

Abstract

Introduction. Copolymers with a polyimide or cellulose backbone and polymethacrylic acid side chains are considered as promising nanostructured materials for targeted drug delivery. In the study in vitro and in vivo accumulation in tumors was assessed for hybrid tri-component nanosystems based on selenium nanoparticles, graft copolymers with a polyimide (HTN-1) or cellulose (HTN-3) backbone and side chains of polymethacrylic acid, and the photosensitizer Radachlorin.

Materials and Methods. The accumulation and localization of HTN-1 and HTN-3 in tumor cells was assessed by fluorescence confocal microscopy in human muscle non-invasive bladder cancer cell cultures after 24 h incubation. The in vivo study was performed in BALB/c mice with intradermally inoculated Ehrlich tumors. Evaluation was performed using the Fluor i In Vivo fluorescence imaging system at 1, 2, 3, 4, 6 and 24 hours after intravenous administration of the test compounds. The tumor/body fluorescence signal contrast was assessed using the ImageJ software.

Results. Confocal image analysis revealed the accumulation of both nanosystems in the cytoplasm of malignant cells, which was comparable to the accumulation of Radachlorin. In the Ehrlich tumor in mice, the fluorescence intensity of the nanosystems and Radachlorin was higher than in the surrounding tissue 6 and 24 hours after intravenous administration. Tumor/tissue fluorescence contrast increased after administration with peak values of 1.4 at 4 hours for Radachlorin, 1.5 at 4-6 hours for HTN-1 and 1.4 at 6-24 hours for HTN-3. The increase in time to peak tumor/tissue contrast is due to the change in pharmacokinetic properties when Radachlorin is incorporated into the nanosystems.

Conclusion. Hybrid tri-component nanosystems with polymide or cellulose backbones accumulate efficiently in tumor cells and slow down clearance from the tumor. Therefore, the development of targeted drugs based on them appears to be a perspective for the treatment and diagnosis of oncological diseases.

https://doi.org/10.37469/0507-3758-2024-70-6-1068-1076
##article.numberofdownloads## 8
##article.numberofviews## 28
pdf (Русский)

References

Алексеев К.В., Аляутдин Р.Н., Блынская Е.В., Квинх Б.Т. Наноразмерные системы доставки лекарственных веществ. Вестник новых медицинских технологий. 2009; 16(2): 17-20.-EDN: LAMWDB.-URL: https://elibrary.ru/download/elibrary_13092100_85689980.pdf. [Alekseev K.V., Alyautdin R.N., Blynskaya E.V., Kvinkh B.T. The nano-dimentional systems of transportation of medicinal preparations. Newsletter of New Medical Technologies. 2009; 16(2): 17-20.-EDN: LAMWDB.-URL: https://elibrary.ru/download/elibrary_13092100_85689980.pdf. (In Rus)].

Bovina E.M., Romanov B.K., Kazakov A.S., et al. Nanoscale therapeutic system: safety assessment features. Safety and Risk of Pharmacotherapy. 2019; 7(3): 127-38.-DOI: https://doi.org/10.30895/2312-7821-2019-7-3-127-138.

Kuznetsova O.V., Kolotilina N.K., Dolgonosov A.M., et al. A de novo nanoplatform for the delivery of metal-based drugs studied with high-resolution ICP-MS. Talanta. 2023; 253: 124035.-DOI: https://doi.org/10.1016/j.talanta.2022.124035.

van den Boogaard W.M.C., Komninos D.S.J., Vermeij W.P. Chemotherapy side-effects: not all DNA damage is equal. Cancers. 2022; 14(3); 627.-DOI: https://doi.org/10.3390/cancers14030627.

Awad N.S., Salkho N.M., Abuwatfa W.H., et al. Tumor vasculature vs tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OpenNano. 2023; 11: 100136.-DOI: https://doi.org/10.1016/j.onano.2023.100136.

Barenholz Y (Chezy). Doxil® - The first FDA-approved nano-drug: Lessons learned. JCR. 2012; 160(2): 117-34.-DOI: https://doi.org/10.1016/j.jconrel.2012.03.020.

Постнов В.Н., Наумышева Е.Б., Королев Д.В., Галагудза М.М. Наноразмерные носители для доставки лекарственных препаратов. Биотехносфера. 2013; (6): 16-27.-EDN: SEOONV.-URL: https://elibrary.ru/download/elibrary_21594856_13139016.pdf. [Postnov W.N., Naumysheva Ye.B., Koroljov D.W., Galagudza M.M. Nano-sized carriers for drug delivery applications. Biotekhnosfera. 2013; (6): 16-27.-EDN: SEOONV.-URL: https://elibrary.ru/download/elibrary_21594856_13139016.pdf. (In Rus)].

Абаева Л.Ф., Шумский В.И., Петрицкая Е.Н., et al. Наночастицы и нанотехнологии в медицине сегодня и завтра. Альманах клинической медицины. 2010; (22): 10-6. [Abaeva L.F., Shumsky V.I., Petritskaya E.N., et al. Nanoparticles and nanotechnologies today and beyond. Almanac of Clinical Medicine. 2010; (22): 10-6. (In Rus)].

Solovyev N.D., Fedoros E.I., Drobyshev E.J., et al. Anticancer activity and tissue distribution of platinum (II) complex with lignin-derived polymer of benzene-poly-carboxylic acids. Journal of Trace Elements in Medicine and Biology. 2017; 43: 72-9.-DOI: https://doi.org/10.1016/j.jtemb.2016.11.009.

Yang C.X., Xing L., Chang X., et al. Synergistic platinum(II) prodrug nanoparticles for enhanced breast cancer therapy. Molecular Pharmaceutics. 2020; 17(4): 1300-1309.-DOI: https://doi.org/10.1021/acs.molpharmaceut.9b01318.

Chary P.S., Shaikh S., Rajana N., et al. Unlocking nature’s arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. Biomaterials Advances. 2024; 162: 213903.-DOI: https://doi.org/10.1016/j.bioadv.2024.213903.

Сурья Н., Бхаттачарья С. PLGA - перспективный полимер для доставки лекарственных средств. Фармация и фармакология. 2021; 9(5): 334-345.-DOI: https://doi.org/10.19163/2307-9266-2021-9-5-334-345.-URL: https://www.pharmpharm.ru/jour/article/view/933/754. [Surya N., Bhattacharyya S. PLGA - The smart polymer for drug delivery. Pharmacy & Pharmacology. 2021; 9(5): 334-345.-DOI: https://doi.org/10.19163/2307-9266-2021-9-5-334-345.-URL: https://www.pharmpharm.ru/jour/article/view/933/754. (In Rus)].

Osipova O., Zakharova N., Pyankov I., et al. Amphiphilic pH-sensitive polypeptides for siRNA delivery. J Drug Deliv Sci Technol. 2022; 69: 103135.-DOI: https://doi.org/10.1016/j.jddst.2022.103135.

Valueva S.V., Krasnopeeva E.L., Borovikova L.N., et al. Triple nanosystems based on amphiphilic molecular brushes, selenium nanoparticles and photosensitizer: synthesis, spectral and morphological characteristics. Nanobiotechnology Reports. 2024; 18(2); 108-115.-DOI: https://doi.org/10.1134/S2635167623601250.

Валуева С.В., Морозова П.Ю., Данилова А.Б. Гибридные трехкомпонентные наносистемы (ГТН) на основе наночастиц селена, Радахлорина и полимерных носителей – графт-сополимеров: синтез, спектральные характеристики и исследование локализации ГТН в опухолевых клетках рака мочевого пузыря человека 587 blcan tvv. Тенденции развития науки и образования. 2024; 109(14): 223-230-DOI: https://doi.org/10.18411/trnio-05-2024-771. [Valueva S.V., Morozova P.Yu., Danilova A.B. Hybrid three-component nanosystems (HTNs) based on selenium nanoparticles, Radachlorine and polymer carriers – graft copolymers: synthesis, spectral characteristics and studies of the localization of HTNs in tumor cells of human bladder cancer 587 blcan tvv. Trends in the Development of Science and Education 2024; 109(14): 223-230-DOI: https://doi.org/10.18411/trnio-05-2024-771. (In Rus)].

Liu S., Wei W., Wang J., Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnol. 2023; 15; 120.-DOI: https://doi.org/10.3390/pharmaceutics15010120.

Круглов С.С., Гельфонд М.Л., Тындык М.Л., et al. Методические аспекты проведения фотодинамической терапии солидной карциномы Эрлиха у мышей линии BALB/C с различной локализацией опухоли. Сибирский онкологический журнал. 2020; 19(6);82-92.-DOI: https://doi.org/10.21294/1814-4861-2020-19-6-82-92.-EDN: OSAAHR.-URL: https://elibrary.ru/download/elibrary_44489275_70722482.pdf. [Kruglov S.S., Gelfond M.L., Tyndyk M.L., et al. Methodological aspects of photodynamic therapy of Ehrlich solid carcinoma in BALB/C mouse strain with various tumor localization. Siberian Journal of Oncology. 2020; 19(6): 82-92.-DOI: https://doi.org/10.21294/1814-4861-2020-19-6-82-92.-EDN: OSAAHR.-URL: https://elibrary.ru/download/elibrary_44489275_70722482.pdf. (In Rus)].

Subhan M.A., Yalamarty S.S.K., Filipczak N., et al. Recent advances in tumor targeting via EPR effect for cancer treatment. Journal of Personalized Medicine. 2021; 11(6): 571.-DOI: https://doi.org/10.3390/jpm11060571.

Krasnopeeva E.L., Melenevskaya E.Y., Klapshina L.G., et al. Poly(methacrylic acid)-cellulose brushes as anticancer porphyrazine carrier. Nanomaterials (Basel, Switzerland). 2021; 11(8): 1997.-DOI: https://doi.org/10.3390/nano11081997.

Bláhová M., Randárová E., Konefał R., et al. Graft copolymers with tunable amphiphilicity tailored for efficient dual drug delivery via encapsulation and pH-sensitive drug conjugation. Polymer Chemistry. 2020; 11(27): 4438-53.-DOI: https://doi.org/10.1039/D0PY00609B.

Kashina A.V., Meleshko T.K., Bogorad N.N., et al. Molecular brushes with a polyimide backbone and poly(ε-caprolactone) side chains by the combination of ATRP, ROP, and CuAAC. Polymers. 2021; 13(19): 3312.-DOI: https://doi.org/10.3390/polym13193312.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024