Selenium-Based Three-Component Nanosystem for Photodynamic Therapy: In Vitro and In Vivo Evaluation of Cellulose Graft Copolymer and Radachlorin Formulation
##article.numberofdownloads## 0
##article.numberofviews## 2
pdf (Русский)

Keywords

tri-component nanosystems
selenium nanoparticles
Radachlorin
photodynamic therapy
cell culture
tumor
mouse

How to Cite

Valueva, S. V., Panchenko, A. V., Morozova, P. Y., Semenov, A. L., Danilova, A. B., & Kruglov, S. S. (2025). Selenium-Based Three-Component Nanosystem for Photodynamic Therapy: In Vitro and In Vivo Evaluation of Cellulose Graft Copolymer and Radachlorin Formulation. Voprosy Onkologii, 71(6), OF–2489. https://doi.org/10.37469/0507-3758-2025-71-6-OF-2489

Abstract

Aim. The purpose of this study presents a comparative evaluation of a modified Radachlorin formulation for photodynamic therapy using an innovative hybrid tri-component nanosystem (HTN) incorporating selenium nanoparticles and a cellulosic graft copolymer.

Materials and Methods. Patient-derived solid tumor cell lines included bladder cancer (587 BlCan TVV), lung cancer (1014 LC PNS), and skin melanoma (929 mel SVU). BALB/c mice (48 female, 28 male) were inoculated with Ehrlich carcinoma and ACATOL colon adenocarcinoma. Real-time cell analysis was performed using the xCELLigence® system. Photosensitizers (HTN and Radachlorin) were administered at concentrations equivalent to 5 and 20 μg/mL Radachlorin. Cellular responses were quantified using the cell index parameter. In vivo, photosensitizers were administered intravenously (5 mg/kg Radachlorin equivalent) when tumors reached 10±1 mm. Photoactivation employed 662 nm laser irradiation at 5 J/cm² (24h post-incubation for cells) and 300 J/cm² (6h post-injection for tumors).

Results. Both photosensitizers demonstrated no dark toxicity in tumor cell cultures. Laser activation induced significant cell death (sharp cell index decrease). Concentration-dependent proliferation inhibition was observed in bladder cancer and melanoma cultures, while lung cancer cells exhibited regrowth capacity. Cellular responses to photodynamic treatment were consistent between Radachlorin and HTN, with lung cancer cells showing relative resistance to both agents. In vivo studies revealed comparable efficacy between HTN and Radachlorin across tumor models, with ACATOL adenocarcinoma demonstrating lower sensitivity. Ehrlich carcinoma-bearing mice showed statistically significant survival improvement. Complete responses were observed in one female mouse with Ehrlich carcinoma and one with ACATOL adenocarcinoma using the selenium-containing nanosystem as a photosensitizer, though without statistical significance versus Radachlorin.

Conclusion. The investigated hybrid selenium-polymer nanosystem shows significant promise for fluorescence-guided diagnosis and photodynamic therapy applications in oncology

https://doi.org/10.37469/0507-3758-2025-71-6-OF-2489
##article.numberofdownloads## 0
##article.numberofviews## 2
pdf (Русский)

References

Церковский Д.А., Протопович Е.Л., Ступак Д.С. Основные аспекты применения фотосенсибилизирующих агентов в фотодинамической терапии. Онкологический журнал. 2019; 13: 2(50): 79–99. EDN: TEAUMD.-URL: https://elibrary.ru/download/elibrary_41040502_87247292.pdf. [Tzerkovsky D.A., Protopovich E.L., Stupak D.S. The basic aspects of the application of photosensitizing agents in photodynamic therapy. Oncological Journal. 2019; 13: 2(50): 79–99.-EDN: TEAUMD.-URL: https://elibrary.ru/download/elibrary_41040502_87247292.pdf (in Rus)].

Anjum S., Hashim M., Imran M., et al. Selenium nanoparticles in cancer therapy: Unveiling cytotoxic mechanisms and therapeutic potential. Cancer Reports. 2025; 8(6): e70210. DOI: https://doi.org/10.1002/cnr2.70210. URL: https://pubmed.ncbi.nlm.nih.gov/40452566/.

Valueva S.V., Krasnopeeva E.L., Borovikova L.N., Morozova P.Yu., Sokolova M.P., Melenevskaya E.Yu., Yakimansky A.V. Triple Nanosystems Based on Amphiphilic Molecular Brushes, Selenium Nanoparticles and Photosensitizer: Synthesis, Spectral, and Morphological Characteristics. Nanobiotechnology reports 2024; 19(1): 108–115.-EDN CUIQQC.-DOI: https://doi.org/10.1134/S2635167623601250.

Freshney R.I., Culture of animal cells: A manual of basic technique and specialized applications, wiley. 2010; 1st ed. DOI: https://doi.org/10.1002/9780470649367.-URL: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470649367.

Belashov A.V., Zhikhoreva A.A., Belyaeva T.N., et al. Machine learning assisted classification of cell lines and cell states on quantitative phase images. Cells. 2021; 10(10): 2587.-DOI: https://doi.org/10.3390/cells10102587.

Zhikhoreva A.A., Belashov A.V., Belyaeva T.N., et al. Comparative analysis of Radachlorin accumulation, localization, and photobleaching in three cell lines by means of holographic and fluorescence microscopy. Photodiagnosis and Photodynamic Therapy. 2022; 39: 102973.-DOI: https://doi.org/10.1016/j.pdpdt.2022.102973.

Yurt F., Ince M., Colak S.G., et al. Investigation of in vitro PDT activities of zinc phthalocyanine immobilised TiO2 nanoparticles. Int J Pharm. 2017; 524 (1-2): 467–474. DOI: https://doi.org/10.1016/j.ijpharm.2017.03.050.

Belashov A.V., Zhikhoreva A.A., Salova A.V., et al. Analysis of Radachlorin localization in living cells by fluorescence lifetime imaging microscopy. J Photochem Photobiol B. 2023; 243: 112699. DOI: https://doi.org/10.1016/j.jphotobiol.2023.112699.

Валуева С.В., Панченко А.В., Морозова П.Ю., et al. Оценка возможности применения гибридных трехкомпонентных наносистем на основе наночастиц селена, графт-сополимеров и Радахлорина для направленной доставки в опухоль. Вопросы онкологии. 2025; 70(6): 1068–1076.-EDN GRIJIJ. DOI: https://doi.org/10.37469/0507-3758-2024-70-6-1068-1076. [Valueva S.V., Panchenko A.V., Morozova P.Yu., et al. Evaluation of the potential of hybrid tri-component nanosystems based on selenium nanoparticles, graft copolymers and radachlorin for targeted tumor delivery. Voprosy Oncologii = Problems in Oncology. 2025; 70(6): 1068–1076.-EDN GRIJIJ. DOI: https://doi.org/10.37469/0507-3758-2024-70-6-1068-1076 (In Rus)].

Casas A., Venosa G.D., Hasan T., Batlle A. Mechanisms of resistance to photodynamic therapy. Current Medicinal Chemistry. 2011; 18: 2486.-DOI: https://doi.org/10.2174/092986711795843272.

Dana P., Pimpha N., Chaipuang A., et al. Inhibiting metastasis and improving chemosensitivity via chitosan-coated selenium nanoparticles for brain cancer therapy. Nanomaterials. 2022; 12: 2606.-DOI: https://doi.org/10.3390/nano12152606.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025