Abstract
Aim: We studied the intergenic interactions and the contribution of polymorphic loci p.Arg72Pro (gene TP53), p.Gln399Arg (gene XRCC1), p.Arg194Trp (gene XRCC1), g.4682G>A (gene TNFa), p.Val353Ala (gene HMMR), p.14+309T>G (gene MDM2), g.38444T>G (gene PALB2) in the formation of predisposition to breast cancer (ВС) in women of Kyrgyz nationality.
Material and method: The study included 103 women of the Kyrgyz ethnic group with the morphologically verified diagnosis of BC and 102 women without cancer and chronic diseases. Genotyping of single-nucleotide polymorphisms (SNPs) was performed using PCR-RFLP. Analysis of the intergenic interactions conducted with MDR 3.0.2 software.
Results: Heterozygous genotype Gln/Arg of gene XRCC1 (ОR=3,15; 95% CI 1,78-5,58), the combination of Arg/Gln // Arg/Pro of genes XRCC1 (p.Gln399Arg) / TP53 (p.Arg72Pro) (OR=3,21; 95% CI 1,21-8,47), Arg/Gln // T/T of genes XRCC1 (p.Gln399Arg) / MDM2 (o.14+309T>G) (OR=3,18; 95% CI 0,99-10,7), Arg/Gln // G/G and Arg/Gln // G/A of genes XRCC1 (p.Gln399Arg) / TNFa (g.4682G>A) (OR=3,84; 95% CI 1,847,90) and (OR=3,91 95% CI 1,29-8,51 respectively), Arg/Gln // T/T of genes XRCC1 (p.Gln399Arg) / PALB2 (p.Thr1100=) (OR=2,92; 95% CI 1,59-5,37), as well as Arg/Gln // Arg/Arg and Arg/Gln // Arg/Trp for polymorphic loci p.Gln399Arg and p.Arg194Trp of gene XRCC1 (OR=2,48; 95% CI 1,12-5,19 and 0R=2,90, 95% CI 1,04-8,12 respectively) were associated with BC in Kyrgyz women.
Conclusions: The results of the present study suggest that combinations of variants of ТP53, XRCC1, TNFa, HMMR, MDM2 и PALB2 genes may contribute to the genetic susceptibility of BC in Kyrgyz women.
References
Кипень В.Н., Мельнов С.Б., Смолякова Р.М. Вклад полиморфных вариантов p.P72R (TP53) и p.V353A (HMMR) в генез спорадических случаев рака молочной железы // Проблемы здоровья и экологии. - 2015. - № 4 (46). - С. 40-46.
Кипень В. Н., Мельнов С. Б., Смолякова Р. М. Роль генов XRCC1, XRCC3 и PALB2 в генезе спорадических форм рака молочной железы // Экологическая генетика. - 2015. - №4 (XIII). - С. 91-98.
Пузырев В.П., Кучер А.Н. Эволюционно-онтогенетические аспекты патогенетики хронических болезней человека // Генетика. - 2011. - Т. 47. - № 12. - C. 1573-1585.
Antoniou A.C, Silvia Casadei S., Heikkinen T. et al. Breast-cancer risk in families with mutations in PALB2 // N. Engl. J. Med. - 2014. - Vol. 371. - P 497-506.
Auvinen P., Tammi R., Parkkinen J. et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival // Am. J. Pathol. - 2000. - Vol. 156. - P. 529-536.
Banday M.Z., Balkhi H.M., Hamid Z. et al. Tumor necrosis factor- (TNF- )-308G/A promoter polymorphism in colorectal cancer in ethnic Kashmiri population - A case control study in a detailed perspective // Meta Gene. -2016. - № 9. - P. 128-136.
Chacko P, Rajan B., Joseph T. Polymorphisms in DNA repair gene XRCC1 and increased genetic susceptibility to breast cancer // Breast Cancer Res Treat. - 2005. -Vol. 89. - P. 15-21.
Couch F.J., Shimelis H., Hu C. et al. Associations between cancer predisposition testing panel genes and breast cancer // JAMA Oncol. - 2017. - Vol. 3(9). - P. 1190-1196.
Demokan S., Demir D., Suoglu Y et al. Polymorphisms of the XRCC1 DNA repair gene in head and neck cancer // Pathol. Oncol. Res. - 2005. - Vol. 11(1). - P 22-25.
Fachal, Dunning A.M. From candidate gene studies to GWAS and post-GWAS analyses in breast cancer // Curr. Opin. Genet. Dev. - 2015. - Vol. 30. - P 32-41.
Ferlay J., Soerjomataram I., Dikshit R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 // Int. J. Cancer. -2015. - Vol. 136. - P 359-386.
Hall C. Wang C., Lange LA. et al. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity // J. Cell Biol. - 1994. - Vol. 126. - № 2. - P 575-588.
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation // Cell. -2011. - Vol. 144. - P. 646-674.
Haupt Y, Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53 // Nature. - 1997. - Vol. 387. - P. 296-299.
Heldin P., Basu K., Olofsson D. et al. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer // J. Biochem. - 2013. - Vol. 154. - №5. - P. 395-408.
Hou J., Jiang Y, Tang W., Jia A S. p53 codon 72 polymorphism and breast cancer risk: A meta-analysis // Experimental and Therapeutic Medicine. - 2013. - Vol. 5(5). - P 1397-1402.
Igisinov N., Kokteubaeva N., Kudaibergenova I. Epidemiology of breast cancer in females of reproductive age in Kyrgyzstan // Asian Pac. J. Cancer Prev. - 2005. - Vol.6. - P. 36-39.
Jeong B.S., Hu W., Belyi et al. Differential levels of transcription of p53-regulated genes by the arginine/ proline polymorphism: p53 with arginine at codon 72 favors apoptosis // FASEB J. - 2016. - Vol. 24. - P 1347-1353.
Jin G., Zhao Y, Sun S., Kang H. Association between the tumor necrosis factor alpha gene 308G> A polymorphism and the risk of breast cancer: a meta-analysis // Tumor Biology. -2014. - Vol. 35. - Issue 12. - P. 12091-12098.
Joshi A.M., Budhathoki S., Ohnaka K. et al. TP53 R72P and MDM2 SNP309 Polymorphisms and Colorectal Cancer Risk: The Fukuoka Colorectal Cancer Study // Jpn. J. Clin. Oncol. - 2011. - Vol. 41(2). - P 232-238.
Kalmyrzaev B., Pharoah P. D.P, Easton D. F. et al. Hyaluronan-mediated motility receptor gene single nucleotide polymorphisms and risk of breast cancer // Cancer Epidemiol. Biomarkers Prev. - 2008. - Vol. 17(12). - P 3618-3620.
Kim J.J., Lee S.B., Park J.K., Yoo YD. TNF-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-XL // Cell Death and Differentiation. -2010. - Vol. 17. - P 1420-1434.
Knappskog S., Bjornslett M., Myklebust L.M. et al. The MDM2 promoter SNP285C/309G haplotype diminishes Sp1 transcription factor binding and reduces risk for breast and ovarian cancer in Caucasians // Cancer Cell. - 2011. - Vol. 19. - P 273-282.
Lamerdin J.E., Montgomery M.A., Stilwagen S.A. et al. Genomic sequence comparison of the human and mouse XRCC1 DNA repair gene regions // Genomics. - 1995. -Vol. 25(2). - P 547-554.
Lowe S.W., Lin A.W. Apoptosis in cancer // Carcinogenesis. - 2000. - Vol. 21(3). - P 485-495.
Maxwell C.A., Bentez J., Gmez-Bald L. et al. Interplay between BRCA1 and RHAMM regulates epithelial apico-basal polarization and may influence risk of breast cancer // PLoS Biol. - 2011. - Vol. 9. - № 11. - P 1-18.
Michailidou K., Beesley J., Lindstrom S. et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer // Nat. Genet. - 2015. - Vol. 47(4). - P. 373-380.
Michele K., Evans M.D., Dan L. et al. PALB2 Mutations and Breast-Cancer Risk // N. Engl. J. Med. - 2014. - Vol. 371. - P. 566-568.
Nag S., Qin J., Srivenugopal KS. et al. The MDM2-p53 pathway revisited // J. Biomed. Res. - 2013. - Vol. 27(4). - P. 254-271.
Maxwell C.A., McCarthy J., Turley E. Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? // J Cell Science. - 2008. - Vol. 121(Pt 7). -P. 925-932.
Tolg C., Hamilton SR., Morninqstar L. et al. RHAMM promotes interphase microtubule instability and mitotic spindle integrity through MEK1/ERK1/2 activity // J. Biol. Chem. - 2010. - Vol. 285. - № 34. - P. 26461-26474.
Torgovnick A., Schumacher B. DNA repair mechanisms in cancer development and therapy // Frontiers in Genetics. - 2015. - Vol. 6. - P. 157.
Turley E. et al. Signaling properties of hyaluronan receptors // J. Biol. Chem. - 2002. - Vol. 277. - № 7. - P 4589-4592.
Wood R., Mitchell M., Sgouros J., Lindahl T. Human DNA Repair Genes // Science. - 2001. - Vol. 291. - Issue 5507. - P 1284-1289.
Xia B., Sheng Q., Nakanishi, K. et al. Control of BRCA2 Cellular and Clinical Functions by a Nuclear Partner, PALB2 // Mol. Cell. - 2006. - Vol. 22. - P. 719-729.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2019