Аннотация
Внедрение иммунотерапии в практику лечения метастатического колоректального рака совершило революцию в этой области онкологии, как и во многих других: до 30-40 % неизлечимых больных, которым показаны ингибиторы контрольных точек иммунного ответа (ИКТИО), демонстрируют стойкий ответ на лечение. До недавнего времени при колоректальном раке назначение иммунотерапии зависело от бинарного молекулярного/иммуногистохимического предиктора: наличия или отсутствия микросателлитной нестабильности/дефекта репарации неспаренных оснований ДНК в диссеминированной опухоли толстой кишки. В настоящее время возможности применения ИКТИО при раке толстой кишки (РТК) быстро расширяются. Так, доказана их польза в неоадъювантном режиме и при выявлении наследственных и соматических мутаций в генах ДНК-полимераз, обладающих редактирующим действием (POLE/POLD1). Выполнен колоссальный объем исследований, призванных охарактеризовать биологическую роль и клиническую значимость мутационной опухолевой нагрузки, отдельных драйверных мутаций, экспрессионных характеристик опухолевой клетки, микроокружения опухоли, системного состояния иммунитета и т. д. Настоящий обзор призван осветить современные представления о роли и механизмах влияния высокой мутационной опухолевой нагрузки, связанной и не связанной с микросателлитной нестабильностью/дефицитом системы репарации неспаренных оснований ДНК, на реализацию эффекта иммунотерапии.
Библиографические ссылки
Brahmer J.R., Drake C.G., Wollner I., et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010; 28(19): 3167-75.-DOI: 10.1200/JCO.2009.26.7609.
Lipson E.J., Sharfman W.H., Drake C.G., et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 2013; 19(2): 462-8.-DOI: 10.1158/1078-0432.CCR-12-2625.
Llosa N.J., Cruise M., Tam A., et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015; 5(1): 43-51.-DOI: 10.1158/2159-8290.CD-14-0863.
Le D.T., Uram J.N., Wang H., et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015; 372(26): 2509-20.-DOI: 10.1056/NEJMoa1500596.
Overman M.J., McDermott R., Leach J.L., et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017; 18(9): 1182-1191.-DOI: 10.1016/S1470-2045(17)30422-9.
André T., Shiu K.K., Kim T.W., et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020; 383(23): 2207-2218.-DOI: 10.1056/NEJMoa2017699.
André T., Lonardi S., Wong K.Y.M., et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann Oncol. 2022; 33(10): 1052-1060.-DOI: 10.1016/j.annonc.2022.06.008.
Lenz H.J., Van Cutsem E., Luisa Limon M., et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II checkmate 142 study. J Clin Oncol. 2022; 40(2): 161-170.-DOI: 10.1200/JCO.21.01015.
Andre Е., Elez E., Van Cutsem E., et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment for microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): First results of the CheckMate 8HW study. Journal of Clinical Oncology. 2024; 42(3_suppl): LBA768-LBA768.-DOI: 10.1200/JCO.2024.42.3_suppl.LBA768.
Cervantes A., Adam R., Roselló S., et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023; 34(1): 10-32.-DOI: 10.1016/j.annonc.2022.10.003.
Benson AB, Venook AP, Adam M, et al. NCCN Guidelines Version 4.2024: Colon Cancer. National Comprehensive Cancer Network. URL: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed at 16.08.2024.
San-Román-Gil M., Martínez-Delfrade I., Albarrán-Fernández V., et al. Case report: Efficacy of immunotherapy as conversion therapy in dMMR/MSI-H colorectal cancer: a case series and review of the literature. Front Immunol. 2024; 15: 1352262.-DOI: 10.3389/fimmu.2024.1352262.
Chalabi M., Fanchi L.F., Dijkstra K.K., et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med. 2020; 26(4): 566-576.-DOI: 10.1038/s41591-020-0805-8.
Chalabi M., Verschoor Y.L., Tan P.B., et al. Neoadjuvant immunotherapy in locally advanced mismatch repair-deficient colon cancer. N Engl J Med. 2024; 390(21): 1949-1958.-DOI: 10.1056/NEJMoa2400634.
Hu H., Kang L., Zhang J., et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial. Lancet Gastroenterol Hepatol. 2022; 7(1): 38-48.-DOI: 10.1016/S2468-1253(21)00348-4.
Cercek A., Lumish M., Sinopoli J., et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med. 2022; 386(25): 2363-2376.-DOI: 10.1056/NEJMoa2201445.
Han K., Tang J.H., Liao L.E., et al. Neoadjuvant immune checkpoint inhibition improves organ preservation in T4bM0 colorectal cancer with mismatch repair deficiency: a retrospective observational study. Dis Colon Rectum. 2023; 66(10): e996-e1005.-DOI: 10.1097/DCR.0000000000002466.
Wang Z., Cheng S., Yao Y., et al. Long-term survivals of immune checkpoint inhibitors as neoadjuvant and adjuvant therapy in dMMR/MSI-H colorectal and gastric cancers. Cancer Immunol Immunother. 2024; 73(9): 182.-DOI: 10.1007/s00262-024-03764-9.
Yu J.H., Liao L.E., Xiao B.Y., et al. Long-term outcomes of dMMR/MSI-H rectal cancer treated with anti-PD-1-based immunotherapy as curative-intent treatment. J Natl Compr Canc Netw. 2024; 22(3): e237096.-DOI: 10.6004/jnccn.2023.7096.
Ambrosini M., Rousseau B., Manca P., et al. Immune checkpoint inhibitors for POLE or POLD1 proofreading-deficient metastatic colorectal cancer. Ann Oncol. 2024; 35(7): 643-655.-DOI: 10.1016/j.annonc.2024.03.009.
Bando H., Tsukada Y., Inamori K., et al. Preoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer. Clin Cancer Res. 2022; 28(6): 1136-1146.-DOI: 10.1158/1078-0432.CCR-21-3213.
Antoniotti C., Rossini D., Pietrantonio F., et al. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2022; 23(7): 876-887.-DOI: 10.1016/S1470-2045(22)00274-1.
Ionov Y., Peinado M.A., Malkhosyan S., et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993; 363(6429): 558-61.-DOI: 10.1038/363558a0.
Svrcek M., Lascols O., Cohen R., et al. MSI/MMR-deficient tumor diagnosis: Which standard for screening and for diagnosis? Diagnostic modalities for the colon and other sites: Differences between tumors. Bull Cancer. 2019; 106(2): 119-128.-DOI: 10.1016/j.bulcan.2018.12.008.
Lin D.I., Quintanilha J.C.F., Danziger N., et al. Pan-tumor validation of a NGS fraction-based MSI analysis as a predictor of response to Pembrolizumab. NPJ Precis Oncol. 2024; 8(1): 204.-DOI: 10.1038/s41698-024-00679-7.
Peltomäki P., Nyström M., Mecklin J.P., Seppälä T.T. Lynch syndrome genetics and clinical implications. Gastroenterology. 2023; 164(5): 783-799.-DOI: 10.1053/j.gastro.2022.08.058.
Ranganathan M., Sacca R.E., Trottier M., et al. Prevalence and Clinical implications of mismatch repair-proficient colorectal cancer in patients with lynch syndrome. JCO Precis Oncol. 2023; 7: e2200675.-DOI: 10.1200/PO.22.00675.
Wensink E., Bond M., Kucukkose E., et al. A review of the sensitivity of metastatic colorectal cancer patients with deficient mismatch repair to standard-of-care chemotherapy and monoclonal antibodies, with recommendations for future research. Cancer Treat Rev. 2021; 95: 102174.-DOI: 10.1016/j.ctrv.2021.102174.
Morton D., Seymour M., Magill L., et al. Preoperative Chemotherapy for Operable Colon Cancer: Mature Results of an International Randomized Controlled Trial. J Clin Oncol. 2023; 41(8): 1541-1552.-DOI: 10.1200/JCO.22.00046.
Cohen R., Hain E., Buhard O., et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol. 2019; 5(4): 551-555.-DOI: 10.1001/jamaoncol.2018.4942.
Fu X., Huang J., Zhu J., et al. Prognosis and immunotherapy efficacy in dMMR&MSS colorectal cancer patients and an MSI status predicting model. Int J Cancer. 2024; 155(4): 766-775.-DOI: 10.1002/ijc.34946.
Geurts B.S., Zeverijn L.J., van Berge Henegouwen J.M., et al. Characterization of discordance between mismatch repair deficiency and microsatellite instability testing may prevent inappropriate treatment with immunotherapy. J Pathol. 2024; 263(3): 288-299.-DOI: 10.1002/path.6279.
Loughrey M.B., McGrath J., Coleman H.G., et al. Identifying mismatch repair-deficient colon cancer: near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series. Histopathology. 2021; 78(3): 401-413.-DOI: 10.1111/his.14233.
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012; 487(7407): 330-337.-DOI: 10.1038/nature11252.
Salem M.E., Puccini A., Grothey A., et al. Comparative molecular analysis between microsatellite instability-high (MSI-H) tumors with high tumor mutational burden (TMB-H) versus MSI-H tumors with TMB-intermediate/low. Annals of Oncology. 2018; 29(suppl_8): viii649-viii669.
Choi J., Park K.H., Kim Y.H., et al. Large-scale cancer genomic analysis reveals significant disparities between microsatellite instability and tumor mutational burden. Cancer Epidemiol Biomarkers Prev. 2024; 33(5): 712-720.-DOI: 10.1158/1055-9965.EPI-23-1466.
Marques A., Cavaco P., Torre C., et al. Tumor mutational burden in colorectal cancer: Implications for treatment. Crit Rev Oncol Hematol. 2024; 197: 104342.-DOI: 10.1016/j.critrevonc.2024.104342.
Zhang Y., Wang D., Zhao Z., et al. Enhancing the quality of panel-based tumor mutation burden assessment: a comprehensive study of real-world and in-silico outcomes. NPJ Precis Oncol. 2024; 8(1): 18.-DOI: 10.1038/s41698-024-00504-1.
Schrock A.B., Ouyang C., Sandhu J., et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol. 2019; 30(7): 1096-1103.-DOI: 10.1093/annonc/mdz134.
Chida K., Kawazoe A., Kawazu M., et al. A low tumor mutational burden and PTEN mutations are predictors of a negative response to PD-1 blockade in MSI-H/dMMR gastrointestinal tumors. Clin Cancer Res. 2021; 27(13): 3714-3724.-DOI: 10.1158/1078-0432.CCR-21-0401.
Manca P., Corti F., Intini R., et al. Tumour mutational burden as a biomarker in patients with mismatch repair deficient/microsatellite instability-high metastatic colorectal cancer treated with immune checkpoint inhibitors. Eur J Cancer. 2023; 187: 15-24.-DOI: 10.1016/j.ejca.2023.03.029.
Barbe R., Belkouchi Y., Menu Y., et al. Imaging-guided prognostic score-based approach to assess the benefits of combotherapy versus monotherapy with immune checkpoint inhibitors in metastatic MSI-H colorectal cancer patients. Eur J Cancer. 2024; 202: 114020.-DOI: 10.1016/j.ejca.2024.114020.
Bortolomeazzi M., Keddar M.R., Montorsi L., et al. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts. Gastroenterology. 2021; 161(4): 1179-1193.-DOI: 10.1053/j.gastro.2021.06.064.
Ratovomanana T., Nicolle R., Cohen R., et al. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability. Ann Oncol. 2023; 34(8): 703-713.-DOI: 10.1016/j.annonc.2023.05.010.
Fabrizio D.A., George T.J. Jr, Dunne R.F., et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol. 2018; 9(4): 610-617.-DOI: 10.21037/jgo.2018.05.06.
Gustav M., Reitsam N.G., Carrero Z.I., et al. Deep learning for dual detection of microsatellite instability and POLE mutations in colorectal cancer histopathology. NPJ Precis Oncol. 2024; 8(1): 115.-DOI: 10.1038/s41698-024-00592-z.
Disel U., Sivakumar S., Pham T., et al. Increased KRAS G12C prevalence, high tumor mutational burden, and specific mutational signatures are associated with MUTYH mutations: a pan-cancer analysis. Oncologist. 2024; 29(2): e213-e223.-DOI: 10.1093/oncolo/oyad230.
Nielsen M., de Miranda N.F., van Puijenbroek M., et al. Colorectal carcinomas in MUTYH-associated polyposis display histopathological similarities to microsatellite unstable carcinomas. BMC Cancer. 2009; 9: 184.-DOI: 10.1186/1471-2407-9-184.
Yanus G.A., Akhapkina T.A., Ivantsov A.O., et al. Spectrum of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies. Clin Genet. 2018; 93(5): 1015-1021.-DOI: 10.1111/cge.13228.
Volkov N.M., Yanus G.A., Ivantsov A.O., et al. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. Invest New Drugs. 2020; 38(3): 894-898.-DOI: 10.1007/s10637-019-00842-z.
Mathias-Machado M.C., Peixoto R.D., Ashton-Prolla P., et al. Complete response to immunotherapy in a patient with mutyh-associated polyposis and gastric cancer: a case report. Case Rep Oncol. 2023; 16(1): 504-510.-DOI: 10.1159/000530965.
Grolleman J.E., de Voer R.M., Elsayed F.A., et al. Mutational signature analysis reveals NTHL1 deficiency to cause a multi-tumor phenotype. Cancer Cell. 2019; 35(2): 256-266.e5.-DOI: 10.1016/j.ccell.2018.12.011.
Palles C., West H.D., Chew E., et al. Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. Am J Hum Genet. 2022; 109(5): 953-960.-DOI: 10.1016/j.ajhg.2022.03.018.
Adam R., Spier I., Zhao B., et al. Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am J Hum Genet. 2016; 99(2): 337-51.-DOI: 10.1016/j.ajhg.2016.06.015.
Chen M.H., Chang S.C., Lin P.C., et al. Combined microsatellite instability and elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) might be a more promising immune biomarker in colorectal cancer. Oncologist. 2019; 24(12): 1534-1542.-DOI: 10.1634/theoncologist.2019-0171.
Crisafulli G., Sartore-Bianchi A., Lazzari L., et al. Temozolomide treatment alters mismatch repair and boosts mutational burden in tumor and blood of colorectal cancer patients. Cancer Discov. 2022; 12(7): 1656-1675.-DOI: 10.1158/2159-8290.CD-21-1434.
Morano F., Raimondi A., Pagani F., et al. Temozolomide followed by combination with low-dose ipilimumab and nivolumab in patients with microsatellite-stable, o6-methylguanine-DNA methyltransferase-silenced metastatic colorectal cancer: the MAYA trial. J Clin Oncol. 2022; 40(14): 1562-1573.-DOI: 10.1200/JCO.21.02583.
Wojciechowicz K., Cantelli E., Van Gerwen B., et al. Temozolomide increases the number of mismatch repair-deficient intestinal crypts and accelerates tumorigenesis in a mouse model of Lynch syndrome. Gastroenterology. 2014; 147(5): 1064-72.e5.-DOI: 10.1053/j.gastro.2014.07.052.
Chen E.X., Jonker D.J., Loree J.M., et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the canadian cancer trials group CO.26 study. JAMA Oncol. 2020; 6(6): 831-838.-DOI: 10.1001/jamaoncol.2020.0910.
Valero C., Lee M., Hoen D., et al. Response rates to anti-PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol. 2021; 7(5): 739-743.-DOI: 10.1001/jamaoncol.2020.7684.
Taflin N., Sandow L., Thawani R., et al. Survival in metastatic microsatellite-stable colorectal cancer correlated with tumor mutation burden and mutations identified by next-generation sequencing. J Gastrointest Oncol. 2024; 15(2): 681-688.-DOI: 10.21037/jgo-23-809.
Roudko V., Bozkus C.C., Orfanelli T., et al. Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell. 2020; 183(6): 1634-1649.e17.-DOI: 10.1016/j.cell.2020.11.004.
Jonchère V., Montémont H., Le Scanf E., et al. Microsatellite instability at U2AF-binding polypyrimidic tract sites perturbs alternative splicing during colorectal cancer initiation. Genome Biol. 2024; 25(1): 210.-DOI: 10.1186/s13059-024-03340-5.
Li Y., Yang X., Zhu W., et al. SWI/SNF complex gene variations are associated with a higher tumor mutational burden and a better response to immune checkpoint inhibitor treatment: a pan-cancer analysis of next-generation sequencing data corresponding to 4591 cases. Cancer Cell Int. 2022; 22(1): 347.-DOI: 10.1186/s12935-022-02757-x.
Wang J., Xiu J., Farrell A., et al. Mutational analysis of microsatellite-stable gastrointestinal cancer with high tumour mutational burden: a retrospective cohort study. Lancet Oncol. 2023; 24(2): 151-161.-DOI: 10.1016/S1470-2045(22)00783-5.
Wang D., Wang J., Zhou D., et al. SWI/SNF complex genomic alterations as a predictive biomarker for response to immune checkpoint inhibitors in multiple cancers. Cancer Immunol Res. 2023; 11(5): 646-656.-DOI: 10.1158/2326-6066.CIR-22-0813.
Wang Z., Wang C., Lin S., Yu X. Effect of TTN mutations on immune microenvironment and efficacy of immunotherapy in lung adenocarcinoma patients. Front Oncol. 2021; 11: 725292.-DOI: 10.3389/fonc.2021.725292.
Chen R., Yao Z., Jiang L. Construction and validation of a TTN mutation associated immune prognostic model for evaluating immune microenvironment and outcomes of gastric cancer: An observational study. Medicine (Baltimore). 2024; 103(29): e38979.-DOI: 10.1097/MD.0000000000038979.
Hernando-Calvo A., Han M., Ayodele O., et al. A phase II, open-label, randomized trial of durvalumab with olaparib or cediranib in patients with mismatch repair-proficient colorectal or pancreatic cancer. Clin Colorectal Cancer. 2024; 23(3): 272-284.e9.-DOI: 10.1016/j.clcc.2024.05.002.
Tsukada Y., Bando H., Inamori K., et al. Three-year outcomes of preoperative chemoradiotherapy plus nivolumab in microsatellite stable and microsatellite instability-high locally advanced rectal cancer. Br J Cancer. 2024; 131(2): 283-289.-DOI: 10.1038/s41416-024-02730-7.
Xia F., Wang Y., Wang H., et al. Randomized phase II trial of immunotherapy-based total neoadjuvant therapy for proficient mismatch repair or microsatellite stable locally advanced rectal cancer (TORCH). J Clin Oncol. 2024; 42(28): 3308-3318.-DOI: 10.1200/JCO.23.02261
Challoner B.R., Woolston A., Lau D., et al. Genetic and immune landscape evolution in MMR-deficient colorectal cancer. J Pathol. 2024; 262(2): 226-239.-DOI: 10.1002/path.6228.
Chuwdhury G.S., Guo Y., Chiang C.L., et al. ImmuneMirror: A machine learning-based integrative pipeline and web server for neoantigen prediction. Brief Bioinform. 2024; 25(2): bbae024.-DOI: 10.1093/bib/bbae024.
Ballhausen A., Przybilla M.J., Jendrusch M., et al. The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution. Nat Commun. 2020; 11(1): 4740.-DOI: 10.1038/s41467-020-18514-5.
Lo W., Parkhurst M., Robbins P.F., et al. Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer. Cancer Immunol Res. 2019; 7(4): 534-543.-DOI: 10.1158/2326-6066.CIR-18-0686.

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
© АННМО «Вопросы онкологии», Copyright (c) 2025