Поиск новых генов наследственного рака яичника посредством полноэкзомного анализа пациенток, продемонстрировавших выраженный ответ на платиносодержащую терапию
##article.numberofdownloads## 184
##article.numberofviews## 191
pdf (Русский)

关键词

бесплатиновый интервал
мутация
платиносодержащая терапия
полноэкзомное секвенирование
рак яичника

How to Cite

Соколенко, А., Бройде, Р., Ни, В., Соколова, Т., Городнова, Т., Савоневич, Е., Мулкиджан, Р., Кулигина, Е., & Имянитов, Е. (2023). Поиск новых генов наследственного рака яичника посредством полноэкзомного анализа пациенток, продемонстрировавших выраженный ответ на платиносодержащую терапию. VOPROSY ONKOLOGII, 69(4), 676–683. https://doi.org/10.37469/0507-3758-2023-69-4-676-683

摘要

Введение. Данные клинических наблюдений свидетельствуют, что опухоли яичника и некоторые другие разновидности карцином демонстрируют выраженный ответ на производные платины или схожие препараты, если у пациентки есть наследственные мутации BRCA1/2 или других генов ДНК-репарации. Изучение BRCA1/2-негативных раков яичника (РЯ), которые продемонстрировали хороший ответ на платиносодержащую терапию, представляется перспективным подходом к поиску новых генов наследственного рака.

Цель. Поиск новых генетических детерминант РЯ в коллекции случаев, сформированной на основе сведений о клинической эффективности первичного лечения.

Материалы и методы. Образцы ДНК 123 пациенток с продолжительной клинической ремиссией были подвергнуты трехэтапному анализу: 1) тестирование распространенных мутаций BRCA1/2; 2) таргетное секвенирование генов, ассоциированных с наследственными раками (ATM, BLM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, NF2, PALB2, PMS2, POLD1, POLE, PTCH1, PTEN, RAD51C, RAD51D, RB1, TP53, TSC1, TSC2, WRN) 3) полноэкзомное секвенирование.

Результаты. В группе 123 РЯ был обнаружен 41 (33 %) случай носительства мутаций BRCA1/2 и семь случаев носительства патогенных вариантов ATM, BLM, NBN (n = 3), PALB2 и RAD51D. По результатам полноэкзомного анализа отобрано 12 генов, в которых были обнаружены инактивирующие варианты и продукты которых вовлечены в различные аспекты канцерогенеза: AEN, ATF5, BRIP1, CEBPA, FANCM, GREB1, GRWD1, P4HTM, POLA2, RAD50, RAD54B, STK36. У пациенток, носительниц инактивирующих вариантов в генах ATF5 и P4HTM, в опухоли наблюдалась потеря гетерозиготности в локусе соответствующего гена. Исследование дополнительной когорты последовательных диагностических РЯ (n = 107) позволило идентифицировать еще три инактивирующих варианта в отобранных генах-кандидатах — ATF5, BRIP1 и FANCM.

Заключение. Пациенты c хорошим ответом на платиносодержащую терапию представляют собой перспективную категорию для поиска новых генов, ассоциированных с наследственным РЯ.

https://doi.org/10.37469/0507-3758-2023-69-4-676-683
##article.numberofdownloads## 184
##article.numberofviews## 191
pdf (Русский)

参考

Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975–2012. Bethesda, MD: National Cancer Institute. 2015.

Kast K, Rhiem K, Wappenschmidt B, et al. Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet. 2016;53(7):465-471. doi:10.1136/jmedgenet-2015-103672.

Subramanian DN, Zethoven M, McInerny S, et al. Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-15461-z.

Yang X, Leslie G, Doroszuk A, et al. Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol. 2020;38(7):674-685. doi:10.1200/JCO.19.01907.

Song H, Cicek MS, Dicks E, et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet. 2014;23(17):4703-4709. doi:10.1093/hmg/ddu172.

Loveday C, Turnbull C, Ruark E, et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat Genet. 2012;44(5):475-6; author reply 476. doi:10.1038/ng.2224.

Rafnar T, Gudbjartsson DF, Sulem P, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011;43(11):1104-1107. doi:10.1038/ng.955.

Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032-18037. doi:10.1073/pnas.1115052108.

Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410-414. doi:10.1038/ng.569.

Gorodnova TV, Kotiv KB, Ivantsov AO, et al. Efficacy of Neoadjuvant Therapy With Cisplatin Plus Mitomycin C in BRCA1-Mutated Ovarian Cancer. Int J Gynecol Cancer. 2018;28(8):1498-1506. doi: 10.1097/IGC.0000000000001352.

De Picciotto N, Cacheux W, Roth A, et al. Ovarian cancer: Status of homologous recombination pathway as a predictor of drug response. Crit Rev Oncol Hematol. 2016;101:50-59. doi:10.1016/j.critrevonc.2016.02.014.

Gorodnova TV, Sokolenko AP, Ivantsov AO, et al. High response rates to neoadjuvant platinum-based therapy in ovarian cancer patients carrying germ-line BRCA mutation. Cancer Lett. 2015;369(2):363-367. doi:10.1016/j.canlet.2015.08.028.

Alsop K, Fereday S, Meldrum C, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol. 2012;30(21):2654-2663. doi:10.1200/JCO.2011.39.8545.

Foulkes WD. BRCA1 and BRCA2: Chemosensitivity, treatment outcomes and prognosis. Fam Cancer. 2006;5:135–142. doi:10.1007/s10689-005-2832-5.

Mateo J, Carreira S, Sandhu S, et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med. 2015;373(18):1697-1708. doi:10.1056/NEJMoa1506859.

Pennington KP, Walsh T, Harrell MI, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764-775. doi:10.1158/1078-0432.CCR-13-2287.

Sokolenko AP, Rozanov ME, Mitiushkina NV, et al. Founder mutations in early-onset, familial and bilateral breast cancer patients from Russia. Fam Cancer. 2007;6(3):281-286. doi:10.1007/s10689-007-9120-5.

Sokolenko AP, Gorodnova TV, Bizin IV, et al. Molecular predictors of the outcome of paclitaxel plus carboplatin neoadjuvant therapy in high-grade serous ovarian cancer patients. Cancer Chemother Pharmacol. 2021;88(3):439-450. doi:10.1007/s00280-021-04301-6.

Telli ML, Timms KM, Reid J, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764-3773. doi:10.1158/1078-0432.CCR-15-2477.

Sokolenko AP, Sokolova TN, Ni VI, et al. Frequency and spectrum of founder and non-founder BRCA1 and BRCA2 mutations in a large series of Russian breast cancer and ovarian cancer patients. Breast Cancer Res Treat. 2020;184(1):229-235. doi:10.1007/s10549-020-05827-8.

Dang TT, Morales JC. Involvement of POLA2 in double strand break repair and genotoxic stress. Int J Mol Sci. 2020;21(12):4245. doi:10.3390/ijms21124245.

Weber-Lassalle N, Hauke J, Ramser J, et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Research. 2018;20(1). doi:10.1186/s13058-018-0935-9.

Figlioli G, Kvist A, Tham E, et al. The spectrum of FANCM protein truncating variants in european breast cancer cases. Cancers (Basel). 2020;12(2):292. doi:10.3390/cancers12020292.

Fiorese CJ, Schulz AM, Lin YF, et al. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol. 2016;26(15):2037-2043. doi:10.1016/j.cub.2016.06.002.

Nukuda A, Endoh H, Yasuda M, et al. Role of ATF5 in the invasive potential of diverse human cancer cell lines. Biochem Biophys Res Commun. 2016;3;474(3):509-514. doi:10.1016/j.bbrc.2016.04.131.

Karpel-Massler G, Horst BA, Shu C, et al. A synthetic cell-penetrating dominant-negative ATF5 peptide exerts anticancer activity against a broad spectrum of treatment-resistant cancers. Clin Cancer Res. 2016;22(18):4698-4711. doi:10.1158/1078-0432.CCR-15-2827.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023