Роль монооксида азота в развитии и лечении онкологических заболеваний
##article.numberofdownloads## 288
##article.numberofviews## 515
pdf (Русский)

关键词

оксид азота
рак лёгкого
пути передачи сигнала
протиопухолевые препараты
злокачественные опухоли

How to Cite

Гарифуллин, А., Пикин, О., Рябов, А., Александров, О., & Агабекян, Г. (2023). Роль монооксида азота в развитии и лечении онкологических заболеваний. VOPROSY ONKOLOGII, 69(4), 623–630. https://doi.org/10.37469/0507-3758-2023-69-4-623-630

摘要

Оксид азота является одной из важнейших сигнальных клеточных молекул как в патологических, так и в физиологических условиях. Установлено, что оксид азота играет роль в процессе развития онкологических заболеваний, в частности рака простаты, рака молочной железы, рака поджелудочной железы и т. д. При низких концентрациях он оказывает стимулирующее действие на опухолевые клетки, при высоких — наоборот. На протяжении длительного периода времени осуществляются попытки использовать данное соединение для лечения различных опухолей, в том числе и в газообразной форме. Поэтому требуется дальнейшее детальное изучение газообразного оксида азота при лечении онкологических заболеваний и рака лёгкого. Для поиска опубликованных исследований по данной тематике использовались следующие базы данных: Pubmed, Web of Science, EMBASE, РИНЦ и Scopus. Поиск производился во временном интервале с даты создания соответствующей базы данных до февраля 2023 г.

https://doi.org/10.37469/0507-3758-2023-69-4-623-630
##article.numberofdownloads## 288
##article.numberofviews## 515
pdf (Русский)

参考

Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994;298(Pt 2)(Pt 2):249-58. doi:10.1042/bj2980249.

Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(Pt 3):593-615. doi:10.1042/0264-6021:3570593.

Choudhari SK, Chaudhary M, Bagde S, et al. Nitric oxide and cancer: a review. World J Surg Oncol. 2013;11:118. doi:10.1186/1477-7819-11-118.

Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15(6):252-9. doi:10.1007/s10787-007-0013-x.

Cinelli MA, Do HT, Miley GP, et al. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev. 2020;40(1):158-189. doi:10.1002/med.21599.

Zhan N, Wang C, Chen L, et al. S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell. 2018;71(1):142-154.e6. doi:10.1016/j.molcel.2018.05.024.

Alimoradi H, Greish K, Gamble AB, et al. Controlled delivery of nitric oxide for cancer therapy. Pharm Nanotechnol. 2019;7(4):279-303. doi:10.2174/2211738507666190429111306.

Haddad IY, Crow JP, Hu P, et al. Concurrent generation of nitric oxide and superoxide damages surfactant protein A. Am J Physiol. 1994;267(3 Pt 1):L242-9. doi:10.1152/ajplung.1994.267.3.L242.

Liu S, Zhang Y, He X, et al. Signal processing and generation of bioactive nitric oxide in a model prototissue. Nat Commun. 2022;13(1):5254. doi:10.1038/s41467-022-32941-6.

Khan FH, Dervan E, Bhattacharyya DD, et al. The role of Nitric Oxide in cancer: master regulator or NOt? Int J Mol Sci. 2020;21(24):9393. doi:10.3390/ijms21249393.

Ichinose F, Roberts JD Jr, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004;109(25):3106-11. doi:10.1161/01.CIR.0000134595.80170.62.

Pepke-Zaba J, Higenbottam TW, Dinh-Xuan et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991;338(8776):1173-4. doi:10.1016/0140-6736(91)92033-x.

Nakane T, Esaki J, Ueda R, et al. Inhaled nitric oxide improves pulmonary hypertension and organ functions after adult heart valve surgeries. Gen Thorac Cardiovasc Surg. 2021;69(12):1519-1526. doi:10.1007/s11748-021-01651-z.

Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334-343. doi:10.1016/j.redox.2015.08.009.

Fukumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325-340. doi:10.1038/nrclinonc.2018.29.

Thomas DD, Ridnour LA, Isenberg JS, et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med. 2008;45(1):18-31. doi:10.1016/j.freeradbiomed.2008.03.020.

Forrester K, Ambs S, Lupold SE, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci U S A. 1996;93(6):2442-7. doi:10.1073/pnas.93.6.2442.

Glockzin S, von Knethen A, Scheffner M, et al. Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J Biol Chem. 1999;274(28):19581-6. doi:10.1074/jbc.274.28.19581.

Boyd CS, Cadenas E. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis. Biol Chem. 2002;383(3-4):411-23. doi:10.1515/BC.2002.045.

Li L, Zhang J, Block ER, Patel JM. Nitric oxide-modulated marker gene expression of signal transduction pathways in lung endothelial cells. Nitric Oxide. 2004;11(4):290-7. doi:10.1016/j.niox.2004.10.007.

Chanvorachote P, Pongrakhananon V, Chunhacha P. Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation. Biomed Res Int. 2014;2014:941359. doi:10.1155/2014/941359.

Yongsanguanchai N, Pongrakhananon V, Mutirangura A, et al. Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. Am J Physiol Cell Physiol. 2015;308(2):C89-100. doi:10.1152/ajpcell.00187.2014.

Sanuphan A, Chunhacha P, Pongrakhananon V, et al. Long-term nitric oxide exposure enhances lung cancer cell migration. Biomed Res Int. 2013;2013:186972. doi:10.1155/2013/186972.

Hirano S. In vitro and in vivo cytotoxic effects of nitric oxide on metastatic cells. Cancer Lett. 1997;115(1):57-62. doi:10.1016/s0304-3835(97)04706-x.

Baritaki S, Huerta-Yepez S, Sahakyan A, et al. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP. Cell Cycle. 2010;9(24):4931-40. doi:10.4161/cc.9.24.14229.

Monteiro HP, Rodrigues EG, Amorim Reis AKC, et al. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective. Nitric Oxide. 2019;89:1-13. doi:10.1016/j.niox.2019.04.009.

Calabrese V, Cornelius C, Rizzarelli E, et al. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal. 2009;11(11):2717-39. doi:10.1089/ars.2009.2721.

Okuda Y, Sakoda S, Fujimura H, et al. Nitric oxide via an inducible isoform of nitric oxide synthase is a possible factor to eliminate inflammatory cells from the central nervous system of mice with experimental allergic encephalomyelitis. J Neuroimmunol. 1997;73(1-2):107-16. doi:10.1016/s0165-5728(96)00194-4.

Vong LB, Nagasaki Y. Nitric Oxide nano-delivery systems for cancer therapeutics: advances and challenges. Antioxidants. 2020;9(9):791. doi:10.3390/antiox9090791.

Maiuthed A, Ninsontia C, Erlenbach-Wuensch K, et al. Cytoplasmic p21 mediates 5-fluorouracil resistance by inhibiting pro-apoptotic Chk2. Cancers. 2018;10(10):373. doi:10.3390/cancers10100373.

Scicinski J, Oronsky B, Ning S, et al. NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001. Redox Biol. 2015:1-8. doi:10.1016/j.redox.2015.07.002.

Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 2018;13:6049-6058. doi:10.2147/IJN.S140462.

Kang R, Zhang L, Jiang L, et al. Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening. Postharvest Biology and Technology. 2016;112:277–89. doi:10.1016/j.postharvbio.2015.08.017.

Basudhar D, Glynn SA, Greer M, et al. Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proc Natl Acad Sci U S A. 2017;114(49):13030-13035. doi:10.1073/pnas.1709119114.

Thomsen LL, Miles DW, Happerfield L, et al. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995;72(1):41-4. doi:10.1038/bjc.1995.274.

Loibl S, von Minckwitz G, Weber S, et al. Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer. 2002;95(6):1191-8. doi:10.1002/cncr.10817.

Nakamura Y, Yasuoka H, Zuo H, et al K. Nitric oxide in papillary thyroid carcinoma: induction of vascular endothelial growth factor D and correlation with lymph node metastasis. J Clin Endocrinol Metab. 2006;91(4):1582-5. doi:10.1210/jc.2005-1790.

Heinecke JL, Ridnour LA, Cheng RY, et al. Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc Natl Acad Sci U S A. 2014;111(17):6323-8. doi:10.1073/pnas.1401799111.

Baltaci S, Orhan D, Gögüs C, et al. Inducible nitric oxide synthase expression in benign prostatic hyperplasia, low- and high-grade prostatic intraepithelial neoplasia and prostatic carcinoma. BJU Int. 2001;88(1):100-3. doi:10.1046/j.1464-410x.2001.02231.x.

Vahora H, Khan MA, Alalami U, et al. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention. J Cancer Prev. 2016;21(1):1-12. doi:10.15430/JCP.2016.21.1.1.

Yu M, Lamattina L, Spoel SH, et al. Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol. 2014;202(4):1142-1156. doi:10.1111/nph.12739.

Stewart VC, Sharpe MA, Clark JB, et al. Astrocyte-derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain [Internet]. J Neurochem [cited 2023 Feb 10]. 2000;75(2):694-700. doi:10.1046/j.1471-4159.2000.0750694.x. Available from: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.2000.0750694.x

Soni Y, Softness K, Arora H, et al. The Yin Yang role of nitric oxide in prostate cancer. Am J Mens Health. 2020;14(1):1557988320903191. doi:10.1177/1557988320903191.

Wang J, Vine CE, Balasiny BK, et al. The roles of the hybrid cluster protein, Hcp and its reductase, Hcr, in high affinity nitric oxide reduction that protects anaerobic cultures of Escherichia coli against nitrosative stress. Mol Microbiol. 2016;100(5):877-92. doi:10.1111/mmi.13356.

Liu WZ, Kong DD, Gu XX, et al. Cytokinins can act as suppressors of nitric oxide in Arabidopsis. Proc Natl Acad Sci U S A. 2013;110(4):1548-53. doi:10.1073/pnas.1213235110.

Sugita H, Kaneki M, Tokunaga E, et al. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am J Physiol Endocrinol Metab. 2002;282(2):E386-94. doi:10.1152/ajpendo.00087.2001.

Mintz J, Vedenko A, Rosete O, et al. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel). 2021;9(2):94. doi:10.3390/vaccines9020094.

Liu PF, Zhao DH, Qi Y, et al. The clinical value of exhaled nitric oxide in patients with lung cancer. Clin Respir J [Internet]. 2018;12(1):23-30 [cited 2023 Feb 10]. doi:10.1111/crj.12471. Available from: https://onlinelibrary.wiley.com/doi/10.1111/crj.12471

Donohue JF, Herje N, Crater G, et al. Characterization of airway inflammation in patients with COPD using fractional exhaled nitric oxide levels: a pilot study. Int J Chron Obstruct Pulmon Dis. 2014;9:745-51. doi:10.2147/COPD.S44552.

Masri F. Role of nitric oxide and its metabolites as potential markers in lung cancer. Ann Thorac Med. 2010;5(3):123-7. doi:10.4103/1817-1737.65036.

Colakogullari M, Ulukaya E, Yilmaztepe A, et al. Higher serum nitrate levels are associated with poor survival in lung cancer patients. Clin Biochem. 2006;39(9):898-903. doi:10.1016/j.clinbiochem.2006.06.008.

Fiorucci S, Antonelli E, Burgaud JL, et al. Nitric oxide-releasing NSAIDs: a review of their current status. Drug Saf. 2001;24(11):801-11. doi:10.2165/00002018-200124110-00002.

Bonavida B, Garban H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Biol. 2015;6:486-494. doi:10.1016/j.redox.2015.08.013.

Remes A, Körbelin J, Arnold C, et al. Adeno-associated virus-mediated gene transfer of inducible nitric oxide synthase to an animal model of pulmonary hypertension. Hum Gene Ther. 2022;33(17-18):959-967. doi:10.1089/hum.2021.230.

Zhang F, Wu S, Lu X, et al. Gene transfer of endothelial nitric oxide synthase attenuates flow-induced pulmonary hypertension in rabbits. Ann Thorac Surg. 2008;85(2):581-5. doi:10.1016/j.athoracsur.2007.08.043.

Song J, Shi J, Dong D, et al. A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy. Clin Cancer Res. 2018;24(15):3583-3592. doi:10.1158/1078-0432.CCR-17-2507.

Буранов С.Н., Буянов А.Б., Воеводин С.В., и др. Аппарат для ингаляционной NO-терапии. Биорадикалы и антиоксиданты. 2016;3(3):225-226 [Buranov SN, Buyanov AB, Voevodin SV, et al. Apparatus for inhalation NO-therapy. Bioradikaly i antioksidanty. 2016;3(3):225-226 (In Russ).].

Патент РФ на изобретение №2553290/ 10.06.15. Бюл. №16. Буранов С.Н., Карелин В.И., Селемир В.Д., Ширшин А.С. Устройство для получения окиси азота. [Buranov SN, Karelin VI, Selemir VD, Shirshin AS. Patent RUS №2553290/ 10.06.15. Byul. №16. Nitrogen oxide generator system. (In Russ.)]. [cited 2023 Mar 15] Available from: https://patents.google.com/patent/RU2553290C1/ru.

Патент РФ на изобретение №211864/ 24.06.22. Бюл. № 18. Каменщиков Н.О. Устройство дыхательного контура для проведения неинвазивной вентиляции легких портативными респираторами при терапии оксидом азота. [Kamenshchikov NO. Patent RUS №211864/ 24.06.22. Byul. № 18. Breathing circuit device for non-invasive lung ventilation with portable respirators during nitric oxide therapy. (In Russ.)]. [cited 2023 Mar 15] Available from: https://www.elibrary.ru/item.asp?id=48777013.

Буранов С.Н., Карелин В.И., Селемир В.Д., и др. Аппарат ингаляционной терапии оксидом азота «Тианокс» и первый опыт его клинического применения в кардиохирургии. Научно-образовательная конференция «Актуальные вопросы и инновационные технологии в анестезиологии и реаниматологии»; Март 30-31, 2018; Санкт Петербург. [Buranov SN, Karelin VI, Selemir VD, et al. Tianox nitric oxide inhalation therapy device and the first experience of its clinical use in cardiac surgery. Scientific and Educational Conference «Current Issues and Innovative Technologies in Anaesthesiology and Resuscitation»; 2018: 30-31; Saint-Petersburg. (In Russ.)]. [cited 2023 Mar 15] Available from: https://www.elibrary.ru/item.asp?id=36619751.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023