Роль иммунной супрессии при хирургическом лечении солидных опухолей: звенья патогенеза и способы ее коррекции
##article.numberofdownloads## 124
##article.numberofviews## 285
pdf (Русский)

关键词

солидные опухоли
хирургическая травма
иммунносупрессивные клетки
локальное и системное воспаление
послеоперационные рецидивы
DAMPs

How to Cite

Стукань, А. И., Кульбакин, Д. Е., Порханов, В. А., Гилевич, И. В., Бодня, В. Н., & Довлатбекян, А. А. (2023). Роль иммунной супрессии при хирургическом лечении солидных опухолей: звенья патогенеза и способы ее коррекции. VOPROSY ONKOLOGII, 69(6), 986–995. https://doi.org/10.37469/0507-3758-2023-69-6-986-995

摘要

Основным радикальным методом терапии большинства онкологических заболеваний является хирургическое лечение. Тем не менее, накоплено немало данных о послеоперационном иммунодефиците, что, вероятно, играет значимую роль в прогрессировании опухолевого процесса. С другой стороны, следует учитывать и тот факт, что у онкологических больных исходно может отмечать определенный иммунный дисбаланс за счет существующего опухолевого процесса. При этом переход дормантных опухолевых клеток в пролиферирующее состояние способствует рецидивированию и метастазированию в короткие сроки после операции. Подобное усугубление иммунокомпрометированного статуса онкологического пациента после оперативного вмешательства ассоциировано с тяжелой хирургической травмой, что особенно свойственно местно-распространенным стадиям опухолевого процесса. Системный ответ на повреждение тканей после хирургического вмешательства и формирование раневой поверхности провоцируют каскад нарушений в клеточном звене иммунитета. Главным событием в этом процессе является высвобождение высокой концентрации циркулирующих молекул, ассоциированных с повреждением тканей (damage-associated molecular patterns (DAMPs)), что провоцирует активацию локального и системного воспалительного ответа. В исследованиях показана ассоциация маркеров воспаления раннего послеоперационного периода с онкологическими результатами при солидных опухолях. Нейтрофилы обеспечивают первичный ответ на хирургическую травму, а образование нейтрофильных внеклеточных ловушек (NETs) способствует прогрессированию опухоли. Активированные макрофаги в процессе заживления раны представляют собой опухоль-ассоциированный фенотип, промотирующий опухолевую прогрессию. Кроме того, рекрутирование и активация миелоидных клеток-супрессоров (MDSCs), регуляторных Т-лимфоцитов (Tregs), повышенная экспрессия лиганда запрограммированной клеточной гибели-1 (PD-L1) на иммунных клетках, фактора роста эндотелия сосудов (vascular endothelial growth factor, VEGF) при хирургической травме усугубляют иммуносупрессию и способствуют формированию преметастатической ниши. Терапевтические стратегии нормализации клеточного звена иммунитета после операции включают анти-DAMPs, снижение уровня послеоперационного воспаления, комбинированную с хирургическим вмешательством иммунотерапию, антиангиогенную и таргетную терапию в отношении нейтрофилов, макрофагов, MDSCs и Tregs. Кроме того, с этой целью могут быть использованы различные хирургические методы, способствующие благоприятному и раннему заживлению послеоперационной раны, включая адекватно выполненный реконструктивный этап, что также влияет на послеоперационный иммунитет. В целом, современные методы лечения, направленные на активацию клеточного звена иммунитета в послеоперационном периоде, требуют разработки новых комплексных подходов. Необходимо углублённое изучение основных механизмов дисфункции иммунитета, связанных с хирургической травмой, протекания послеоперационного раневого процесса, фенотипирование иммуносупрессивных клеток и разработка современных, персонализированных способов профилактики и лечения подобных состояний.

https://doi.org/10.37469/0507-3758-2023-69-6-986-995
##article.numberofdownloads## 124
##article.numberofviews## 285
pdf (Русский)

参考

Pan H, Gray R, Braybrooke J, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377(19):1836-1846. https://doi.org/10.1056/NEJMoa1701830.

Shapiro J, van Lanschot JJB, Hulshof M, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16(9):1090-1098. https://doi.org/10.1016/S1470-2045(15)00040-6.

Гурмиков Б.Н., Болоков М.С., Гурмикова Н.Л. Отдаленные результаты хирургического лечения рака поджелудочной железы. Обзор литературы. Кубанский научный медицинский вестник. 2017;1(2):142-147 [Gurmikov BN, Bolokov MS, Gurmikova NL. Long-term results of surgical treatment for pancreatic cancer. A review of the literature. Kubanskij nauchnyj medicinskij vestnik = Kuban Scientific Medical Bulletin. 2017;1(2):142-7 (In Russ.)]. https://doi.org/10.25207/1608-6228-2017-2-142-147.

Mahvi DA, Liu R, Grinstaff MW, et al. Local cancer recurrence: the realities, challenges, and opportunities for new therapies. CA Cancer J Clin. 2018;68(6):488-505. https://doi.org/10.3322/caac.21498.

Кутукова С.И., Беляк Н.П., Иваськова Ю.В., и др. Системное воспаление в течении аденогенного рака слюнных желез. Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И.П. Павлова. 2022;29(3):74-80 [Kutukova SI, Belyak NP, Ivaskova JV, et al. Systemic inflammation in salivary gland cancer. The Scientific Notes of the Pavlov University. 2022;29(3):74-80 (In Russ.)]. https://doi.org/10.24884/1607-4181-2022-29-3-74-80.

Tohme S, Simmons RL, Tsung A. Surgery for cancer: a trigger for metastases. Cancer Res. 2017;77(7):1548-1552. https://doi.org/10.1158/0008-5472.CAN-16-1536.

Angka L, Martel AB, Kilgour M, et al. Natural killer cell IFNgamma secretion is profoundly suppressed following colorectal cancer surgery. Ann Surg Oncol. 2018;25(12):3747-3754. https://doi.org/10.1245/s10434-018-6691-3.

Krall JA, Reinhardt F, Mercury OA, et al. The systemic response to surgery triggers the outgrowth of distant immunecontrolled tumors in mouse models of dormancy. Sci Transl Med. 2018;10(436). https://doi.org/10.1126/scitranslmed.aan3464.

Zheng C, Liu S, Geng P, et al. Minimally invasive videoassisted versus conventional open thyroidectomy on immune response: a metaanalysis. Int J Clin Exp Med. 2015;8(2):2593-2599.

Wang J, Su X, Yang L, et al. The influence of myeloid-derived suppressor cells on angiogenesis and tumor growth after cancer surgery. Int J Cancer. 2016;138(11):2688-2699. https://doi.org/10.1002/ijc.29998.

Menna C, De Falco E, Teodonio L, et al. Surgical woundsite inflammation: video-assisted thoracic surgery versus thoracotomy. Interact Cardiovasc Thorac Surg. 2019;28(2):240-246. https://doi.org/10.1093/icvts/ivy231.

Tang F, Tie Y, Tu C, et al. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin Transl Med. 2020;10(1):199-223. https://doi.org/10.1002/ctm2.24.

Kim EY, Hong TH. Changes in total lymphocyte count and neutrophil-to-lymphocyte ratio after curative pancreatectomy in patients with pancreas adenocarcinoma and their prognostic role. J Surg Oncol. 2019;120(7):1102-1111. https://doi.org/10.1002/jso.25725.

Timmermans K, Kox M, Vaneker M, et al. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Medicine. 2016;42(4):551-61. https://doi.org/10.1007/s00134-015-4205-3.

Alvarez K, Vasquez G. Damage-associated molecular patterns and their role as initiators of inflammatory and auto-immune signals in systemic lupus erythematosus. Int Rev Immunol. 2017;36(5):259-270. https://doi.org/10.1080/08830185.2017.1365146.

Wu G, Zhu Q, Zeng J, et al. Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-kappaB. J Thorac Dis. 2019;11(11):4816-4828. https://doi.org/10.21037/jtd.2019.10.26.

Timmermans K, Kox M, Vaneker M, et al. Plasma levels of dangerassociated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Med. 2016;42(4):551-561. https://doi.org/10.1007/s00134-015-4205-3.

Schindler SM, Frank MG, Annis JL, et al. Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Mol Cell Neurosci. 2018;89:71-79. https://doi.org/10.1016/j.mcn.2018.04.005.

Darrabie MD, Cheeseman J, Limkakeng AT, et al. Toll-like receptor activation as a biomarker in traumatically injured patients. J Surg Res. 2018;231:270-277. https://doi.org/10.1016/j.jss.2018.05.059.

Pandolfi F, Altamura S, Frosali S, et al. Key role of DAMP in inflammation, cancer, and tissue repair. Clin Ther. 2016;38(5):1017-1028. https://doi.org/10.1016/j.clinthera.2016.02.028.

McIlroy DJ, Bigland M, White AE, et al. Cell necrosisindependent sustained mitochondrial and nuclear DNA release following trauma surgery. J Trauma Acute Care Surg. 2015;78(2):282-288. https://doi.org/10.1097/TA.0000000000000519.

Anunobi R, Boone BA, Cheh N, et al. Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. J Surg Res. 2018;226:181-191. https://doi.org/10.1016/j.jss.2018.02.042.

Sharma B, McLeland CB, Potter TM, et al. Assessing NLRp3 inflammasome activation by nanoparticles. Methods Mol Biol. 2018;1682:135-147. https://doi.org/10.1007/978-1-4939-7352-1_12.

Ershaid N, Sharon Y, Doron H, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 2019;10(1):4375. https://doi.org/10.1038/s41467-019-12370-8.

Кутукова С.И., Беляк Н.П., Иваськова Ю.В. Прогностическая роль факторов системного воспаления в течении плоскоклеточного рака слизистой оболочки полости рта. Медицинский алфавит. 2021;(10):28-34 [Kutukova SI, Belyak NP, Ivaskova YuV. Prognostic role of systemic inflammation in oral cavity squamous cell carcinoma. Medical alphabet. 2021;(10):28-34 (In Russ.)]. https://doi.org/10.33667/2078-5631-2021-10-28-34.

Gao XH, Tian L, Wu J, et al. Circulating CD14(+) HLA-DR(-/low) myeloid-derived suppressor cells predicted early recurrence of hepatocellular carcinoma after surgery. Hepatol Res. 2017;47(10):1061-1071. https://doi.org/10.1111/hepr.12831.

Кононенко В.И., Кит О.И., Комарова Е.Ф. Оценка экспрессии факторов транскрипции, неоангиогенеза и апоптоза при послеоперационных осложнениях у больных с различным течением рака слизистой оболочки полости рта. Кубанский научный медицинский вестник. 2017;1(1):64-68 [Kononenko VI, Kit OI, Komarova EF, et al. Evaluation of the expression of transcription, neoangiogenesis and apoptosis factors in case of postoperative complications in patients with different progression of oral mucosa cancer. Kubanskij nauchnyj medicinskij vestnik = Kuban Scientific Medical Bulletin. 2017;1(1):64-8 (In Russ.)]. https://doi.org/10.25207/1608-6228-2017-1-64-68.

Ananth AA, Tai LH, Lansdell C, et al. Surgical stress abrogates pre-existing protective T cell mediated anti-tumor immunity leading to postoperative cancer recurrence. PLoS One. 2016;11(5):e0155947. https://doi.org/10.1371/journal.pone.0155947.

Cheng R, Billet S, Liu C, et al. Periodontal inflammation recruits distant metastatic breast cancer cells by increasing myeloid-derived suppressor cells. Oncogene. 2019;39(7):1543-56. https://doi.org/10.1038/s41388-019-1084-z.

Xu P, He H, Gu Y, et al. Surgical trauma contributes to progression of colon cancer by downregulating CXCL4 and recruiting MDSCs. Exp Cell Res. 2018;370(2):692-698. https://doi.org/10.3390/jcm9124096.

Jia R, Zhou M, Tuttle CSL, et al. Immune capacity determines outcome following surgery or trauma: a systematic review and meta-analysis. Eur J Trauma Emerg Surg. 2019. https://doi.org/10.1007/s00068-019-01271-6.

Petri B, Sanz M-J. Neutrophil chemotaxis. Cell Tissue Res. 2018;371(3):425-436. https://doi.org/10.1007/s00441-017-2776-8.

Chen MB, Hajal C, Benjamin DC, et al. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc Natl Acad Sci. 2018;115(27):7022-7027. https://doi.org/10.1073/pnas.1715932115.

Burgener SS, Schroder K. Neutrophil extracellular traps in host defense. Cold Spring Harb Perspect Biol. 2019. https://doi.org/10.1101/cshperspect.a037028.

Hu Z, Murakami T, Tamura H, et al. Neutrophil extracellular traps induce IL-1beta production by macrophages in combination with lipopolysaccharide. Int J Mol Med. 2017;39(3):549-558. https://doi.org/10.3892/ijmm.2017.2870.

McIlroy DJ, Jarnicki AG, Au GG, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care. 2014;29(6):1133.e1-5. https://doi.org/10.1016/j.jcrc.2014.07.013.

Liu L, Mao Y, Xu B, et al. Induction of neutrophil extracellular traps during tissue injury: involvement of STING and Toll-like receptor 9 pathways. Cell Prolif. 2019;52(3):e12579. https://doi.org/10.1111/cpr.12579.

Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression-implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16(6):356-371. https://doi.org/10.1038/s41571-019-0175-7.

Dong L, Zheng X, Wang K, et al. Programmed death 1/programmed cell death-ligand 1 pathway participates in gastric surgery-induced imbalance of T-helper 17/regulatory T cells in mice. J Trauma Acute Care Surg. 2018;85(3):549-559. https://doi.org/10.1097/TA.0000000000001903.

Xu P, Zhang P, Sun Z, et al. Surgical trauma induces postoperative T-cell dysfunction in lung cancer patients through the programmed death-1 pathway. Cancer Immunol Immunother. 2015;64(11):1383-1392. https://doi.org/10.1007/s00262-015-1740-2.

Sun Z, Mao A, Wang Y, et al. Treatment with anti-programmed cell death 1 (PD-1) antibody restored postoperative CD8+ T cell dysfunction by surgical stress. Biomed Pharmacother. 2017;89:1235-1241. https://doi.org/10.1016/j.biopha.2017.03.014.

Bakos O, Lawson C, Rouleau S, et al. Combining surgery and immunotherapy: turning an immunosuppressive effect into a therapeutic opportunity. Journal for ImmunoTherapy of Cancer. 2018;6(1). https://doi.org/10.1186/s40425-018-0398-7.

Tai LH, Alkayyal AA, Leslie AL, et al. Phosphodiesterase-5 inhibition reduces postoperative metastatic disease by targeting surgery-induced myeloid derived suppressor cell-dependent inhibition of natural killer cell cytotoxicity. Oncoimmunology. 2018;7. https://doi.org/10.1080/2162402X.2018.1431082.

Zhu X, Pribis JP, Rodriguez PC, et al. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury. Ann Surg. 2014;259:171-8. https://doi.org/10.1097/SLA.0b013e31828611f8.

Ananth A, Tai L, Lansdell C, et al. Surgical stress abrogates pre-existing protective T cell mediated anti-tumor immunity leading to postoperative Cancer recurrence. PLoS One. 2016;11:1-19. https://doi.org/10.1371/journal.pone.0155947.

Xu P, Zhang P, Sun Z, et al. Surgical trauma induces postoperative T-cell dysfunction in lung cancer patients through the programmed death-1 pathway. Cancer Immunol Immunother. 2015;64:1383-92. https://doi.org/10.1007/s00262-015-1740-2.

Matzner P, Sorski L, Shaashua L, et al. Perioperative treatment with the new synthetic TLR-4 agonist GLA-SE reduces cancer metastasis without adverse effects. Int J Cancer. 2016;138: 1754-64. https://doi.org/10.1002/ijc.29885.

Horowitz M, Neeman E, Sharon E, et al. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol. 2015;12:213-26. https://doi.org/10.1038/nrclinonc.2014.224.

Shaashua L, Shabat-Simon M, Haldar R, et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res. 2017;23:4651-61. https://doi.org/10.1158/1078-0432.CCR-17-0152.

Sorski L, Melamed R, Matzner P, et al. Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through β-adrenoceptors blockade and COX2 inhibition. Brain Behav Immun. 2016;58:91-8. https://doi.org/10.1016/j.bbi.2016.05.017.

Sun Z, Mao A, Wang Y, et al. Treatment with antiprogrammed cell death 1 ( PD-1 ) antibody restored postoperative CD8 + T cell dysfunction by surgical stress. Biomed Pharmacother. 2017;89:1235-41. https://doi.org/10.1016/j.biopha.2017.03.014.

Wang C, Sun W, Ye Y, et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat Biomed Eng. 2017;1:0011. https://doi.org/10.1038/s41551-016-0011.

Liu J, Blake SJ, Yong MCR, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 2016;6:1382-99. https://doi.org/10.1158/2159-8290.CD-16-0577.

Tarhini AA, Edington H, Butterfield LH, et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS One. 2014;9(2):e87705. https://doi.org/10.1371/journal. pone.0087705.

Forde PM, Chaft JE, Smith KN, et al. Neoadjuvant PD-1 blockade in Resectable lung Cancer. N Engl J Med. 2018. https://doi.org/10.1056/NEJMoa1716078.

Zhang J, Tai L, Ilkow CS, et al. Maraba MG1 virus enhances natural killer cell function via conventional dendritic cells to reduce postoperative metastatic disease. Mol Ther. 2014;22:1320-32. https://doi.org/10.1038/mt.2014.60.

Tai L-H, Auer R. Attacking postoperative metastases using perioperative oncolytic viruses and viral vaccines. Front Oncol. 2014;4:217. https://doi.org/10.3389/fonc.2014.00217.

Sun T, Yan W, Yang C, et al. Clinical research on dendritic cell vaccines to prevent postoperative recurrence and metastasis of liver cancer. Genet Mol Res. 2015;14:16222-32. https://doi.org/10.4238/2015.December.8.12.

Gao D, Li C, Xie X, et al. Autologous tumor lysatepulsed dendritic cell immunotherapy with cytokine-induced killer cells improves survival in gastric and colorectal cancer patients. PLoS One. 2014;9:e93886. https://doi.org/10.1371/journal.pone.0093886.

Pan K, Guan XX, Li YQ, Zhao JJ, et al. Clinical activity of adjuvant cytokine-induced killer cell immunotherapy in patients with postmastectomy triple-negative breast cancer. Clin Cancer Res. 2014;20:3003-11. https://doi.org/10.1158/1078-0432.CCR-14-0082.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023