Три пандемии сразу: неинфекционная (онкологическая), инфекционная (COVID-19) и поведенческая (гипокинезия)
Загрузок: 83
Просмотров: 217
pdf

Ключевые слова

канцерогенез
старение
COVID-19
здравоохранение
физическая активность
гипокинезия
биопсихосоциальная реабилитация

Как цитировать

Голубев, А., Семиглазова, Т., Клюге, В., Каспаров, Б., Беляев, А., & Анисимов, В. . (2022). Три пандемии сразу: неинфекционная (онкологическая), инфекционная (COVID-19) и поведенческая (гипокинезия). Вопросы онкологии, 67(2), 163–180. https://doi.org/10.37469/0507-3758-2021-67-2-163-180

Аннотация

В обзоре рассмотрены данные о способности физической активности улучшать результаты лечения и противодействовать развитию заболеваний, риск которых растет с увеличением возраста. Основное внимание уделено злокачественным опухолям и проблемам, возникающим из-за ограничений физической активности в условиях пандемии COVID-19. Ввиду важной роли, которую играет в мотивации к изменениям поведения понимание причин, по которым это может быть полезно для предотвращения не только онкологических проблем, но и осложнений COVID-19, обсуждены физиологические и молекулярные механизмы, посредством которых один и тот же фактор, физическая активность, может лучше, чем любые фармакологические средства, воспроизводящие некоторые ее эффекты, противодействовать самым разным формам канцерогенеза независимо от различий в локализации и патогенезе злокачественных опухолей. На этих основаниях проведен анализ данных о количественных отношениях между онкологическими рисками, физической активностью и применением ее предполагаемых фармакологических имитаторов.

https://doi.org/10.37469/0507-3758-2021-67-2-163-180
Загрузок: 83
Просмотров: 217
pdf

Библиографические ссылки

Moen M.H. COVID-19 reminds us strongly of the necessity of physical activity: step on! Brit J Sports Med. 2020;54(20):1181-2.

Biro P.A., Thomas F., Ujvari B., Beckmann C. Can Energetic Capacity Help Explain Why Physical Activity Reduces Cancer Risk? Trends Cancer. 2020;6(10):829-37.

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L. A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394-424.

Horn L., Garassino M. COVID-19 in patients with cancer: managing a pandemic within a pandemic. Nat Rev Clin Oncol. 2021;18. doi: 10.1038/s41571-020-00441-5.

Bakouny Z., Hawley J.E., Choueiri T. K. et al. COVID-19 and cancer: Current challenges and perspectives. Cancer Cell. 2020;38(5):629-46.

Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet. 2021. doi: 10.1016/S0140-6736(21)00234-8.

Garassino M.C., Vyas M., de Vries E. et al. The ESMO Call to Action on COVID-19 vaccinations and patients with cancer: Vaccinate. Monitor. Educate. Ann Oncol. 2021. doi: 10.1016/j.annonc.2021.01.068.

Голубев А.Г, Сидоренко А.В. Теория и практика старения в условиях пандемии COVID-19. Успехи геронтологии. 2020;33(2):397-408. [Golubev A.G., Sidorenko A.V. Theory and practice of aging during the COVID-19 pandemic. Adv Gerontol. 2020;10(4):303-12 (In Russ.)].

Golubev A.G. COVID-19: A challenge to physiology of aging. Front Physiol. 2020;11. doi: 10.3389/fphys.2020.584248.

Sasson I. Aging and COVID-19 mortality: A demographic perspective. medRxiv. 2020. doi: 10.1101/2020.10.15.20213454.

de Magalhaes J.P. How ageing processes influence cancer. Nat Rev Cancer. 2013;13(5):357-65.

Blagosklonny M.V. From causes of aging to death from COVID-19. Aging. 2020;12(11):10004-21.

Janssens G.E., Houtkooper R.H. Identification of longevity compounds with minimized probabilities of side effects. Biogerontology. 2020;21(6):709-19.

Moskalev A. Is anti-ageing drug discovery becoming a reality? Expert Opini Drug Discovery. 2020;15(2):135-8.

Partridge L., Fuentealba M., Kennedy B.K. The quest to slow ageing through drug discovery. Nat Rev Drug Discovery. 2020;19(8):513-32.

Zhu M., Meng P., Ling X., Zhou L. Advancements in therapeutic drugs targeting of senescence. Therap Adv Chron Disease. 2020;11. doi: 10.1177/2040622320964125.

Golubev A.G. Commentary: Is life extension today a Faustian bargain? Front Med. 2018;5. doi: 10.3389/fmed.2018.00073.

Hall G., Laddu D.R., Phillips S.A. et al. A tale of two pandemics: How will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? Prog Cardiovasc Dis. 2020. doi: 10.1016/j.pcad.2020.04.005.

Wilke J., Mohr L., Tenforde A.S. et al. A Pandemic within the pandemic? Physical activity levels have substantially decreased in countries affected by COVID-19. Preperints with the Lancet. 2020. http://dx.doi.org/10.2139/ssrn.3605343.

Lee I. M., Shiroma E.J., Lobelo F. et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. The Lancet. 2012;380(9838):219-29.

Guthold R., Stevens G.A., Riley L. M., Bull F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. The Lancet Global Health. 2018;6(10):e1077-e86.

Kirwan R., McCullough D., Butler T. et al. Sarcopenia during COVID-19 lockdown restrictions: Long-term health effects of short-term muscle loss. GeroScience. 2020;42(6):1547-78.

Brawner C.A., Ehrman J.K., Bole S. et al. Maximal exercise capacity is inversely related to hospitalization secondary to coronavirus disease 2019. Mayo Clin Proceed. 2021; 9(1):32-9.

Chtourou H., Trabelsi K., H'Mida C. et al. Staying physically active during the quarantine and self-isolation period for controlling and mitigating the COVID-19 pandemic: A systematic overview of the literature. Front Psychol. 2020;11. doi: 10.3389/fpsyg.2020.01708.

de Souza F.R., Motta-Santos D., Santos Soares D. et al. Physical activity decreases the prevalence of COVID-19-associated hospitalization: Brazil EXTRA Study. medRxiv. 2020. doi: 10.1101/2020.10.14.20212704.

Wedig I.J., Duelge T.A., Elmer S.J. Infographic. Stay physically active during COVID-19 with exercise as medicine. Brit J Sports Med. 2020. doi: 10.1136/bjsports-2020-103282.

Brown J.C., Winters-Stone K., Lee A., Schmitz K.H. Cancer, physical activity, and exercise. Comprehen Physiol. 2012;2(4):2775-809.

Cormie P., Zopf E.M., Zhang X., Schmitz K.H. The impact of exercise on cancer mortality, recurrence, and treatment-related adverse effects. Epidemiol Rev. 2017;39(1):71-92.

Patel A.V., Friedenreich C.M., Moore S.C. et al. American College of Sports Medicine roundtable report on physical activity, sedentary behavior, and cancer prevention and control. Med Sci Sports Exercise. 2019;51(11). doi: 10.1249/MSS.0000000000002117.

Schmitz K.H., Stout N.L., Maitin-Shepard M. et al. Moving through cancer: Setting the agenda to make exercise standard in oncology practice. Cancer. 2020. doi: 10.1002/cncr.33245.

Быков А., Шапошников А., Маляренко Т., Маляренко Ю. Эффективность безлекарственных методов в профилактике рака, лечении и реабилитации онкологических больных. Медицинский вестник Юга России. 2014;(1):5-14. [Bykov A.T., Shaposhnikov A.V., Malyarenko T.N., Malyarenko Yu.E. The efficacy of non-medicamental methods in cancer prevention, treatment, and rehabilitation of oncologic patients. Meditsynskiy Vestrik Yuga Rossii. 2014;(1):5-14 (in Russ.)].

Каспаров Б.С., Семиглазова Т.Ю., Ковлен Д.В. и др. Наукометрический анализ доказательных исследований физических факторов реабилитации больных раком молочной железы. Злокачественные опухоли. 2018;8(3s1):50-5 [Kasparov B.S., Semiglazova T.Yu., Kovlen D.V. et al. Scientometric analysis of evidence-based studies of the physical factors of rehabilitation of mammary cancerr patients. Zlokachesvennye Opukholi. 2018;8(3s1):50-5 (in Russ.)].

Клюге В., Семиглазова Т., Криворотько П. и др. Биопсихосоциальный подход в реабилитации больных операбельным раком молочной железы. Медицинский совет. 2020;(9):196-204. [Kluge V.A., Semiglazova T.Yu., Krivorotko P.V. et al. Biopsychosocial approach in the rehabilitation of patients with operable breast cancer. Meditsinskiy Sovet. 2020;(9):196-204 (in Russ.)].

Семиглазова Т., Клюге В., Каспаров Б. И др. Международная модель реабилитации онкологических больных. Медицинский совет. 2018;(10):108-16. [Semiglazova T.Yu., Klyuge V.A., Kasparov B.S. et al. International rehabilitation model for oncological patients. Meditsinskiy Sovet. 2018;(10):108-116. (in Russ.].

Alderman G., Semple S., Cesnik R., Toohey K. Health care professionals’ knowledge and attitudes toward physical activity in cancer patients: A systematic review. Semin Oncol Nursing. 2020;36(5). doi: 10.1016/j.soncn.2020.151070.

Hardcastle S.J., Kane R., Chivers P. et al. Knowledge, attitudes, and practice of oncologists and oncology health care providers in promoting physical activity to cancer survivors: an international survey. Support Care Cancer. 2018;26(11):3711-9.

Sharp P., Spence J.C., Bottorff J.L. et al. One small step for man, one giant leap for men’s health: a meta-analysis of behaviour change interventions to increase men’s physical activity. Brit J Sports Med. 2020;54(20):1208-16.

Orange S.T., Jordan A.R., Saxton J.M. The serological responses to acute exercise in humans reduce cancer cell growth in vitro: A systematic review and meta-analysis. Physiol Rep. 2020;8(22). doi: 10.14814/phy2.14635.

Schwappacher R., Schink K., Sologub S. et al. Physical activity and advanced cancer: evidence of exercise-sensitive genes regulating prostate cancer cell proliferation and apoptosis. J Physiol. 2020. doi: 10.1113/jp279150.

Assi M., Dufresne S., Rébillard A. Exercise shapes redox signaling in cancer. Redox Biol. 2020. doi: 10.1016/j.redox.2020.101439.

Bay M.L., Pedersen B.K. Muscle-organ crosstalk: Focus on immunometabolism. Front Physiol. 2020. doi: 10.3389/fphys.2020.567881.

Damiot A., Pinto A.J., Turner J.E., Gualano B. Immunological implications of physical inactivity among older adults during the COVID-19 pandemic. Gerontology. 2020;66(5):431-8.

Hojman P., Gehl J., Christensen J.F., Pedersen B.K. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018;27(1):10-21.

Koelwyn G.J., Zhuang X., Tammela T. et al. Exercise and immunometabolic regulation in cancer. Nat Metab. 2020;2(9):849-57.

Ruiz-Casado A., Martín-Ruiz A., Pérez L.M. et al. Exercise and the hallmarks of cancer. Trends Cancer. 2017;3(6):423-41.

Caan B.J., Cespedes Feliciano E.M., Kroenke C.H. The importance of body composition in explaining the overweight paradox in cancer—counterpoint. Cancer Res. 2018;78(8):1906-12.

Ruiz J.R., Sui X., Lobelo F. et al. Muscular strength and adiposity as predictors of adulthood cancer mortality in men. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1468-76.

Priest C., Tontonoz P. Inter-organ cross-talk in metabolic syndrome. Nat Metab. 2019;1(12):1177-88.

Dilman V.M., Revskoy S.Y., Golubev A.G. Neuroendocrine-ontogenetic mechanism of aging: toward an integrated theory of aging. Int Review Neurobiol. 1986;28:89-156.

Esposito K., Chiodini P., Colao A. et al. Metabolic syndrome and risk of cancer. A systematic review and meta-analysis. Diabetes Care. 2012;35(11):2402-11.

Marhl M., Grubelnik V., Magdič M., Markovič R. Diabetes and metabolic syndrome as risk factors for COVID-19. Diabetes & Metabolic Syndrome: Clin Res Rev. 2020. doi: 10.1016/j.dsx.2020.05.013.

Golubev A.G., Anisimov V.N. Aging and cancer: Is glucose a mediator between them? Oncotarget. 2019;10(63). doi: 10.18632/oncotarget.27344.

Lee N., Spears M.E., Carlisle A.E., Kim D. Endogenous toxic metabolites and implications in cancer therapy. Oncogene. 2020;39(35):5709-20.

Rentsch C.T., Farmer R.E., Eastwood S.V. et al. Risk of 16 cancers across the full glycemic spectrum: a population-based cohort study using the UK Biobank. BMJ Open Diabetes Res Care. 2020;8(1). doi: 10.1136/bmjdrc-2020-001600.

Hulme K.D., Yan L., Marshall R.J. et al. High glucose levels increase influenza-associated damage to the pulmonary epithelial-endothelial barrier. eLife. 2020;9:e56907. doi: 10.7554/eLife.56907.

Triggle C.R., Ding H., Marei I. et al. Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Can J Physiol Pharmacol. 2020;98(7):415-30.

Corine van de Zande S., de Vries J.K., van den Akker-Scheek I. et al. A physically active lifestyle is related to a lower level of skin autofluorescence in a large population with chronic-disease (LifeLines cohort). J Sport Health Sci. 2020. doi: 10.1016/j.jshs.2020.09.007.

Zajda A., Huttunen K.M., Sikora J. et al. Is metformin a geroprotector? A peek into the current clinical and experimental data. Mech Ageing Develop. 2020;191. doi: 10.1016/j.mad.2020.111350.

Klement R.J., Koebrunner P.S., Krage K. et al. Short-term effects of a Paleolithic lifestyle intervention in breast cancer patients undergoing radiotherapy: a pilot and feasibility study. Med Oncol. 2020;38(1). doi: 10.1007/s12032-020-01443-0.

Martel J., Chang S.-H., Wu C.-Y. et al. Recent advances in the field of caloric restriction mimetics and anti-aging molecules. Ageing Res Rev. 2021;66. doi: 10.1016/j.arr.2020.101240.

Muise E.S., Guan H.-P., Liu J. et al. Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver. PLOS ONE. 2019;14(2). doi: 10.1371/journal.pone.0211568.

Guerrieri D., Moon H.Y., van Praag H. Exercise in a Pill: The latest on exercise-mimetics. Brain Plast. 2017;2(2):153-69.

Madeo F., Carmona-Gutierrez D., Hofer S.J., Kroemer G. Caloric restriction mimetics against age-associated disease: Targets, mechanisms, and therapeutic potential. Cell. Metab. 2019;29(3):592-610.

Loomans-Kropp H.A., Pinsky P., Umar A. Evaluation of aspirin use with cancer incidence and survival among older adults in the prostate, lung, colorectal, and ovarian cancer screening trial. JAMA Network Open. 2021;4(1). doi: 10.1001/jamanetworkopen.2020.32072.

Qiao Y., Yang T., Gan Y. et al. Associations between aspirin use and the risk of cancers: a meta-analysis of observational studies. BMC Cancer. 2018;18(1). doi: 10.1186/s12885-018-4156-5.

Bian Y., Wei J., Zhao C., Li G. Natural polyphenols targeting senescence: A novel prevention and therapy strategy for cancer. Int J Mol Sci. 2020;21(2):684. doi: 10.3390/ijms21020684.

Pavan A.R., Silva G.D.B de., Jornada D.H. et al. Unraveling the anticancer effect of curcumin and resveratrol. nutrients. 2016;8(11):628. doi:10.3390/nu8110628.

Панченко А., Тындык М., Федорос Е. и др. Сравнительный анализ экспериментальных данных о влиянии различных полифенолов на продолжительность жизни и старение. Усп. геронтол. 2019;32(3):325-30 [Panchenko A.V., Tyndyk M.L., Fedoros E.I. et al. Comparative analysis of experimental data on the effects of different polyphenols on lifespan and aging. Adv Gerontol. 2019;9(4):396-401 (In Russ.)].

Bayat Mokhtari R., Baluch N., Homayouni T.S. et al. The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review. J Cell Commun Signal. 2018;12(1):91-101.

Gandini S., Puntoni M., Heckman-Stoddard B.M. et al. Metformin and cancer risk and mortality: A systematic review and meta-analysis taking into account biases and confounders. Cancer Prevent Res. 2014;7(9):867-85.

Анисимов В.Н., Попович И.Г., Егормин П.А. и др. Перспективы применения антидиабетических бигуанидов для профилактики и лечения рака: результаты доклинических испытаний. Вопр онкол. 2016;62(2):234-44 [Anisimov V.N., Popovich I.G., Egormin P.A. et al. Prospects of use of antidiabetic biguanides for cancer prevention and treatment: Results of preclinical studies. Voprosy Onkologii 2016;62(2):234-44 (in Russ.)].

Anisimov V.N., Zabezhinski M.A., Popovich I.G. et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle. 2011;10(24):4230-6.

Pietrocola F., Castoldi F., Kepp O. et al. Spermidine reduces cancer-related mortality in humans. Autophagy. 2019;15(2):362-5.

Li X., Dai D., Chen B. et al. Efficacy of PI3K/AKT/mTOR pathway inhibitors for the treatment of advanced solid cancers: A literature-based meta-analysis of 46 randomised control trials. PLOS ONE. 2018;13(2). doi: 10.1371/journal.pone.0192464.

Mirza-Aghazadeh-Attari M., Ekrami E.M., Aghdas S.A.M. et al. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sciences. 2020;255. doi: 10.1016/j.lfs.2020.117481.

Coll A.P., Chen M., Taskar P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2020;578(7795):444-8.

Day E.A., Ford R.J., Smith B.K. et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab. 2019;1(12):1202-8.

Konopka A.R., Laurin J.L., Schoenberg H.M. et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell. 2019;18(1). doi: 10.1111/acel.12880.

Miller B.F., Thyfault J.P. Exercise-pharmacology interactions: metformin, statins, and healthspan. Physiology. 2020;35(5):338-47.

Chen K., Zheng Y., Wei J.-A. et al. Exercise training improves motor skill learning via selective activation of mTOR. Sci Adv. 2019;5(7). doi: 10.1126/sciadv.aaw1888.

Lloyd B.A., Hake H.S., Ishiwata T. et al. Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior. Behav Brain Res. 2017;323:56-67.

Watson K., Baar K. mTOR and the health benefits of exercise. Semin Cell Develop Biol. 2014;36:130-9.

Eschke R.-C.K.-R., Lampit A., Schenk A. et al. Impact of physical exercise on growth and progression of cancer in rodents - A aystematic review and meta-analysis. Front Oncol. 2019;9. doi: 10.3389/fonc.2019.00035.

Ainsworth B.E., Haskell W.L., Leon A.S. et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exercise. 1993;25(1):71-80.

Matthews C.E., Moore S.C., Arem H. et al. Amount and intensity of leisure-time physical activity and lower cancer risk. J Clin Oncol. 2020;38(7):686-97.

Moore S.C., Lee I.-M., Weiderpass E. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816-25.

Zdravkovic A., Hasenoehrl T., Crevenna R. Resistance exercise in prostate cancer patients: A short review. Curr Phys Med Rehabilit Rep. 2021. doi: 10.1007/s40141-021-00307-6.

Campbell J.P., Turner J.E. Debunking the myth of exercise-induced immune suppression: Redefining the impact of exercise on immunological health across the lifespan. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.00648.

Garatachea N., Santos-Lozano A., Sanchis-Gomar F. et al. Elite athletes live longer than the general population: A meta-analysis. Mayo Clin Proc. 2014;89(9):1195-200.

Lemez S., Baker J. Do elite athletes live longer? A systematic review of mortality and longevity in elite athletes. Sports Med Open. 2015;1(1). doi: 10.1186/s40798-015-0024-x.

Blond K., Brinkløv C.F., Ried-Larsen M. et al. Association of high amounts of physical activity with mortality risk: a systematic review and meta-analysis. Brit J Sports Med. 2020;54(20):1195-201.

Zhao M., Veeranki S.P., Magnussen C.G., Xi B. Recommended physical activity and all cause and cause specific mortality in US adults: prospective cohort study. BMJ. 2020;370:m2031. doi: 10.1136/bmj.m2031.

Stamatakis E., Lee I.-M., Bennie J. et al. Does strength-promoting exercise confer unique health benefits? A pooled analysis of data on 11 population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. Am J Epidemiol. 2017;187(5):1102-12.

Осипов М.А., Семиглазова Т.Ю., Попович И.Г. и др. Влияние метформина, мелатонина и их комбинаций с паклитакселом на рост перевиваемой HER2-положительной опухоли молочной железы у самок мышей FBV/N. Вопр онкол. 2017;63(4):650-4 [Osipov М.А., Semiglazova T.Yu., Popovich I.G. et al. Effect of metformin, melatonin and their combinations with paclitaxel on the growth of transplantable HER2-positive breast tumor in female FVB/N mice. Voprosy Onkologii 2017;63(4):650-4 (in Russ.)].

Осипов М.А., Семиглазова Т.Ю., Криворотько П.В. и др. Метформин в лечении рака молочной железы. Злокачественные опухоли. 2017;7(2):76-82 [Osipov M.A., Semiglazova T.U., Krivorotko P.V. et al. Metformin in breast cancer treatment. Zlokachestvennye Opukholi 2017;(2):76-82 (In Russ.)].

Semiglazova T., Osipov M., Krivorotko P. et al. Neoadjuvant endocrine therapy in combination with melatonin and metformin in locally advanced breast cancer. Ann Oncol. 2019;30:v99-v100. doi: 10.1093/annonc/mdz241.002.

Stout N.L., Baima J., Swisher A.K. et al. A systematic review of exercise systematic reviews in the cancer literature (2005-2017). PM & R : J Injury Funct Rehabilitati. 2017;9(9s2):S347-84. doi: 10.1016/j.pmrj.2017.07.074.

Stout N.L., Santa Mina D., Lyons K.D. et al. A systematic review of rehabilitation and exercise recommendations in oncology guidelines. CA: A Cancer J for Clinicians. 2020. doi: 10.3322/caac.21639.

Newton R.U., Hart N.H., Clay T. Keeping patients with cancer exercising in the age of COVID-19. JCO Oncol Practice. 2020;16(10):656-64.

Spence R.R., Sandler C.X., Newton R.U. et al. Physical activity and exercise guidelines for people with cancer: Why are they needed, who should use them, and when? Seminn Oncol Nursing. 2020;36(5). doi: 10.1016/j.soncn.2020.151075.

Hayes S.C., Newton R.U., Spence R.R., Galvão D.A. The Exercise and Sports Science Australia position statement: Exercise medicine in cancer management. J Sci Med Sport. 2019;22(11):1175-99.

Henriksson A., Johansson B., Radu C. et al. Is it safe to exercise during oncological treatment? A study of adverse events during endurance and resistance training – data from the Phys-Can study. Acta Oncol. 2021;60(1):96-105.

Clark E., Maguire H., Cannon P., Leung E..YL. The effects of physical activity, fast-mimicking diet and psychological interventions on cancer survival: A systematic review and meta-analysis of randomized controlled trials. Complement Therap Med. 2021;57. doi: 10.1016/j.ctim.2020.102654.

Caru M., Curnier D., Levesque A. et al. Children’s physical activity behavior following a supervised physical activity program in pediatric oncology. J Cancer Res Clin Oncol. 2020;146(11):3037-48.

Champ C.E., Yancy W.S., Jr. Exercise and patients with cancer—Is it time to get heavier with the dose? JAMA Oncol. 2020;6(2):301.

Dennett A.M., Sarkies M., Shields N. et al. Multidisciplinary, exercise-based oncology rehabilitation programs improve patient outcomes but their effects on healthcare service-level outcomes remain uncertain: a systematic review. J Physiotherap. 2020. doi: 10.1016/j.jphys.2020.12.008.

Kluge V., Semiglazova T., Krivorotko P. et al. Abstract PS9-62: Biopsychosocial approach in the rehabilitation of patients with early breast cancer. Cancer Res. 2021;81(4 Suppl):PS9-62-PS9. doi: 10.1158/1538-7445.SABCS20-PS9-62.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2021