Аблационные технологии в лечении рака молочной железы: обзор литературы
Загрузок: 119
Просмотров: 233
pdf

Ключевые слова

рак молочной железы
аблация
криоаблация
высокоинтенсивный фокусированный ультразвук
миниинвазивная аблация
радиочастотная аблация
микроволновая аблация
лазерная аблация

Как цитировать

Николаев, К. С., Прохоров, Г. Г., Криворотько, П. В., Семиглазов , В. Ф., Табагуа, Т. Т., Комяхов, А. В., Жильцова, Е. К., Зернов , К. Ю., Ульрих, Д. Г., Левченко , В. Е., Бусько, Е. А., & Беляев , А. М. (2024). Аблационные технологии в лечении рака молочной железы: обзор литературы. Вопросы онкологии, 70(2), 233–247. https://doi.org/10.37469/0507-3758-2024-70-2-233-247

Аннотация

Рак молочной железы является наиболее частым злокачественным опухолевым заболеванием среди женщин. За последние два десятилетия новые технологии и скрининг рака молочной железы привели к выявлению заболевания на ранних стадиях. Поэтому чрескожные миниинвазивные технологии все чаще рассматриваются для лечения пациентов, непригодных для хирургического лечения, а также у женщин, отказывающихся от операции, или у пожилых пациентов с выраженной сопутствующей патологией, для которых хирургическое лечение может стать жизнеугрожающим методом лечения. Основными кандидатами для чрескожных миниинвазивных технологий являются больные ранним раком молочной железы с опухолями небольшого размера. Главной целью данных методик является достижение равно эффективного результата лечения в сравнении со стандартным хирургическим вмешательством. Миниинвазивные методы лечения являются удобной альтернативой с многообещающей эффективностью, меньшей стоимостью, меньшей травматизацией кожи, менее выраженным болевым синдромом и более удовлетворительными косметическими результатами. Аблационные методы, используемые при раке молочной железы, включают в себя криоаблацию, радиочастотную аблацию, микроволновую аблацию, высокоинтенсивный фокусированный ультразвук и лазерную аблацию. Целью данной статьи является обсуждение различных методик чрескожных миниинвазивных технологий в лечении рака молочной железы, оценка их клинических результатов и анализ будущих перспектив аблационной терапии.

https://doi.org/10.37469/0507-3758-2024-70-2-233-247
Загрузок: 119
Просмотров: 233
pdf

Библиографические ссылки

Семиглазов В.Ф. Лечение рака молочной железы: клинико-биологическое обоснование. Под ред. Проф. В.Ф. Семиглазова, В.В. Семиглазова. М., СИМК. 2017: 272.

[Semiglazov V.F. Treatment of breast cancer: clinical and biological rationale. Ed. by Prof. V.F. Semiglazov, V.V. Semiglazov. М., SIMK. 2017: 272. (In Rus)].

Nori J., Gill M.K., Meattini I., et al. The evolving role of ultrasound guided percutaneous laser ablation in elderly unresectable breast cancer patients: a feasibility pilot study. Biomed Res Int. 2018.-DOI: https://doi.org/10.1155/2018/9141746.

van de Voort E.M.F., Struik GM., Birnie E., et al. Thermal ablation as an alternative for surgical resection of small (≤2 cm) breast cancers: a meta-analysis. Clin Breast Cancer. 2021; 21: e715‐e730.

Тюляндин С.А., Артамонова Е.В., Жигулев А.Н., и др. Практические рекомендации по лекарственному лечению рака молочной железы. Практические рекомендации RUSSCO, часть 1. Злокачественные опухоли. 2023; 1 (#3s2): 157-200.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3s2-1-157-200.

[Tyulyandin S.A., Artamonova E.V., Zhigulev A.N., et al. Practical recommendations for drug treatment of breast cancer. RUSSCO practical recommendations, part 1. Malignant tumors, 2023; 13(#3s2): 157-200.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3s2-1-157-200. (In Rus)].

Habrawi Z., Melkus M.W., Khan S., et al. Cryoablation: a promising non-operative therapy for low-risk breast cancer. Am J Surg. 2021; 221: 127‐133.-DOI: https://doi.org/10.1016/j.amjsurg.2020.07.028.

van Esser S., Stapper G., van Diest P.J., et al. Ultrasound-guided laser-induced thermal therapy for small palpable invasive breast carcinomas: a feasibility study. Ann Surg Oncol. 2009; 16: 2259.-DOI: https://doi.org/10.1245/s10434-009-0544-z.

van de Voort E.M.F., Struik G.M., Koppert L.B., et al. Treatment of early-stage breast cancer with percutaneous thermal ablation, an open-label randomised phase 2 screening trial: rationale and design of the THERMAC trial. BMJ Open. 2021; 11: e052992.-DOI: https://doi.org/10.1136/bmjopen-2021-052992.

Roknsharifi S., Wattamwar K., Fishman M.D.C., et al. Image-guided microinvasive percutaneous treatment of breast lesions: where do we stand? Radiographics. 2021; 41: 945‐966.-DOI: https://doi.org/10.1148/rg.2021200156.

Peek M.C.L., Ahmed M., Napoli A., et al. Minimally invasive ablative techniques in the treatment of breast cancer: a systematic review and meta-analysis. Int J Hyperthermia. 2017; 33: 191‐202.-DOI: https://doi.org/10.1080/02656736.2016.1230232.

Consensus guideline on the use of transcutaneous and percutaneous ablation for the treatment of benign and malignant tumors of the breast. The American Society of Breast Surgeons. 2018; 3.

Fleming M.M., Holbrook A.I., Newell M.S. Update on image-guided percutaneous ablation of breast cancer. Am J Roentgenol. 2017; 208: 267‐274.-DOI: https://doi.org/10.2214/AJR.16.17129.

Littrup P.J., Jallad B., Chandiwala-Mody P., et al. Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol. 2009; 20: 1329‐1341.-DOI: https://doi.org/10.1016/J.JVIR.2009.06.029.

Imoto S., Wada N., Sakemura N., et al. Feasibility study on radiofrequency ablation followed by partial mastectomy for stage I breast cancer patients. The Breast. 2009; 18: 130‐134.-DOI: https://doi.org/10.1016/j.breast.2009.02.008.

Brenin D.R. Focused ultrasound ablation for the treatment of breast cancer. Ann Surg Oncol. 2011; 18: 3088‐3094.-DOI: https://doi.org/10. 1245/S10434-011-2011-X.

Biondetti P., Saggiante L., Ierardi A.M., et al. Interventional radiology image-guided locoregional therapies (LRTs) and immunotherapy for the treatment of HCC. Cancers (Basel). 2021; 13(22): 5797.-DOI: https://doi.org/10.3390/cancers13225797.

Schässburger K.-U., Löfgren L., Lagerstedt U., et al. Minimally-invasive treatment of early stage breast cancer: a feasibility study using radiofrequency ablation under local anesthesia. The Breast. 2014; 23: 152‐158.-DOI: https://doi.org/10.1016/j.breast.2013.12.007.

Burak W.E., Agnese D.M., Povoski S.P., et al. Radiofrequency ablation of invasive breast carcinoma followed by delayed surgical excision. Cancer. 2003; 98: 1369-1376.-DOI: https://doi.org/10.1002/CNCR.11642.

Susini T., Nori J., Olivieri S., et al. Radiofrequency ablation for minimally invasive treatment of breast carcinoma. A pilot study in elderly inoperable patients. Gynecol Oncol. 2007; 104: 304‐310.-DOI: https://doi.org/10.1016/j.ygyno.2006.08.049.

Yamamoto N., Fujimoto H., Nakamura R., et al. Pilot study of radiofrequency ablation therapy without surgical excision for T1 breast cancer: evaluation with MRI and vacuum-assisted core needle biopsy and safety management. Breast Cancer. 2011; 18: 3‐9.-DOI: https://doi.org/10.1007/S12282-010-0197-6.

Xia L-Y, Hu Q-L, Xu W-Y. Efficacy and safety of radiofrequency ablation for breast cancer smaller than 2 cm: a systematic review and meta-analysis. Front Oncol. 2021; 11.-DOI: https://doi.org/10.3389/fonc.2021.651646.

Nguyen T., Hattery E., Khatri V.P. Radiofrequency ablation and breast cancer: a review. Gland Surg. 2014; 3: 128‐135.-DOI: https://doi.org/10.3978/j.issn.2227684X.2014.03.05.

Noguchi M., Earashi M., Fujii H., et al. Radiofrequency ablation of small breast cancer followed by surgical resection. J Surg Oncol. 2006; 93: 120‐128.-DOI: https://doi.org/10.1002/JSO.20398.

Oura S., Tamaki T., Hirai I., et al. Radiofrequency ablation therapy in patients with breast cancers two centimeters or less in size. Breast Cancer. 2007; 14: 48‐54.-DOI: https://doi.org/10.2325/JBCS.14.48.

Zhou W., Zha X., Liu X., et al. US-guided percutaneous microwave coagulation of small breast cancers: a clinical study. Radiology. 2012; 263(2): 364-73.-DOI: https://doi.org/10.1148/radiol.12111901.

Izzo F., Granata V., Grassi R., et al. Radiofrequency ablation and microwave ablation in liver tumors: an update. Oncologist. 2019; 24: e990‐e1005.-DOI: https://doi.org/10.1634/theoncologist.2018-0337.

Ryan A., Byrne C., Pusceddu C., et al. CIRSE standards of practice on thermal ablation of bone tumours. Cardiovasc Intervent Radiol. 2022; 45: 591‐605.-DOI: https://doi.org/10.1007/s00270-022-03126-x.

Nieuwenhuizen S., Dijkstra M., Puijk R.S., et al. Microwave ablation, radiofrequency ablation, irreversible electroporation, and stereotactic ablative body radiotherapy for intermediate size (3–5 cm) unresectable colorectal liver metastases: a systematic review and meta-analysis. Curr Oncol Rep. 2022; 24: 793‐808.

Gabriel C., Gabriel S., Grant E.H., et al. Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews. 1998: 213-224.

Roubidoux M.A., Yang W., Stafford R.J. Image-guided ablation in breast cancer treatment. Tech Vasc Interv Radiol. 2014; 17: 49‐54.

Xu J., Wu H., Han Z., et al. Microwave ablation of benign breast tumors: a prospective study with minimum 12 months follow-up. Int J Hyperthermia. 2018; 35: 253‐261.-DOI: https://doi.org/10.1080/02656736.2018.1494340.

Yu J., Han Z.Y., Li T., et al. Microwave ablation versus nipple sparing mastectomy for breast cancer ≤5 cm: a pilot cohort study. Front Oncol. 2020; 10.-DOI: https://doi.org/10.3389/fonc.2020.546883.

Zhou W., Yu M., Pan H., et al. Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer. J Immunother Cancer. 2021; 9.-DOI: https://doi.org/10.1136/jitc-2021-002343.

Pusceddu C., Paliogiannis P., Nigri G., Fancellu A. Cryoablation in the management of breast cancer: evidence to date. Breast Cancer: Targets and Therapy. 2019; 11: 283‐292.

Беляев А.М., Прохоров Г.Г. Криогенные технологии в онкологии. Вопросы онкологии. 2015; 61(3): 317-322.

[Belyaev A.M., Prokhorov G.G. Cryogenic technologies in oncology. Voprosy Onkologii = Problems in Oncology. 2015; 61(3): 317-322. (In Rus)].

Прохоров Г.Г., Беляев А.М., Прохоров Д.Г. Основы клинической криомедицины. СПб-М., Издательство «Книга по требованию». 2017: 608.

[Prokhorov G.G., Belyaev A.M., Prokhorov D.G. Fundamentals of clinical cryomedicine. Spb-M. Publisher «Kniga po trebovaniyu». 2017: 608. (In Rus)].

Беляев А.М., Прохоров Г.Г., Захарова В.Д. Малоинвазивные криогенные технологии в лечении рака молочной железы. Обзор литературы. Вопросы онкологии. 2020; 66(2): 103-108.-DOI: https://doi.org/10.37469/0507-3758-2020-66-2-103-108.

[Belyaev A.M., Prokhorov G.G., Zakharova V.D. (2020). Minimally invasive cryogenic technologies in the treatment of breast cancer. Literature review. Voprosy Onkologii = Problems in Oncology. 2020; 66(2): 103-108.-DOI: https://doi.org/10.37469/0507-3758-2020-66-2-103-108. (In Rus)].

Cazzato R.L., de Lara C.T., BuyX., et al. Single-centre experience with percutaneous cryoablation of breast cancer in 23 consecutive nonsurgical patients. Cardiovasc Intervent Radiol. 2015; 38: 1237‐1243.-DOI: https://doi.org/10.1007/s00270-015-1181-5.

Manenti G., Scarano A.L., Pistolese C.A., et al. Subclinical breast cancer: minimally invasive approaches. Our experience with percutaneous radiofrequency ablation vs. cryotherapy. Breast Care. 2013; 8: 356‐360.-DOI: https://doi.org/10.1159/000355707.

Simmons R.M., Ballman K.V., Cox C., et al. Aphase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (alliance) Z1072. Ann Surg Oncol. 2016; 23: 2438‐2445.-DOI: https://doi.org/10.1245/s10434-016-5275-3.

Takada M., Toi M. Cryosurgery for primary breast cancers, its biological impact, and clinical outcomes. Int J Clin Oncol. 2019; 24: 608‐613.

Mauri G., Sconfienza L.M., Pescatori L.C., et al. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: a systematic review and meta-analysis. Eur Radiol. 2017; 27: 3199‐3210.-DOI: https://doi.org/10.1007/s00330-016-4668-9.

Fine R.E., Gilmore R.C., Dietz J.R., et al. Cryoablation without excision for low risk early-stage breast cancer: 3-year interim analysis of ipsilateral breast tumor recurrence in the ICE3 trial. Ann Surg Oncol. 2021; 28: 5525‐5534.-DOI: https://doi.org/10.1245/S10434-021-10501-4.

Regen-Tuero H.C., Ward R.C., Sikov W.M., Littrup P.J. Cryoablation nd immunotherapy for breast cancer: overview and rationale for combined therapy. Radiol Imaging Cancer. 2021; 3.

Bachu V.S., Kedda J., Suk I., et al. High-intensity focused ultrasound: a review of mechanisms and clinical applications. Ann Biomed Eng. 2021; 49: 1975‐1991.-DOI: https://doi.org/10.1007/S10439-021-02833-9.

Peek M.C.L., Wu F. High-intensity focused ultrasound in the treatment of breast tumours. Ecancermedicalscience. 2018; 12.

Siedek F., Yeo S.Y., Heijman E., et al. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU): technical background and overview of current clinical applications (Part 1). Rofo. 2019; 191(6): 522-530.-DOI: https://doi.org/10.1055/a-0817-5645.

Guan L., Xu G. Damage effect of high-intensity focused ultrasound on breast cancer tissues and their vascularities. World J Surg Oncol. 2016; 14.-DOI: https://doi.org/10.1186/s12957-016-0908-3.

Wei F., Chen W., Lin X. HIFU ablation as a therapy for breast tumor: a meta-analysis of 23 prospective feasibility studies. Breast Journal. 2020; 26: 1478‐1480.

Gianfelice D., Khiat A., Boulanger Y., et al. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol. 2003; 14: 1275‐1282.-DOI: https://doi.org/10.1097/01.RVI.0000092900.73329.A2.

Furusawa H., Namba K., Nakahara H., et al. The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS). Breast Cancer. 2007; 14(1): 55-8.-DOI: https://doi.org/10.2325/jbcs.14.55.

de Maar J.S., Suelmann B.B.M., Braat M.N.G.J.A., et al. Phase I feasibility study of magnetic resonance guided high intensity focused ultrasound-induced hyperthermia, lyso-thermosensitive liposomal doxorubicin and cyclophosphamide in de novo stage IV breast cancer patients: study protocol of the I-GO study. BMJ Open. 2020; 10.-DOI: https://doi.org/10.1136/bmjopen-2020-040162.

Kerbage Y., Betrouni N., Collinet P., et al. Laser interstitial thermotherapy application for breast surgery: current situation and new trends. Breast. 2017; 33: 145‐152.

Dowlatshahi K., Francescatti D.S., Bloom K.J. Laser therapy for small breast cancers. Am J Surg. 2002; 184(4): 359-63.-DOI: https://doi.org/10.1016/s0002-9610(02)00942-x.

Haraldsdóttir K.H., Ivarsson K., Götberg S., et al. Interstitial laser thermotherapy (ILT) of breast cancer. Eur J Surg Oncol. 2008; 34: 739‐745.-DOI: https://doi.org/10.1016/J.EJSO.2008.01.008.

Rai Z.L., Feakins R., Pallett L.J., et al. Irreversible electroporation (Ire) in locally advanced pancreatic cancer: a review of current clinical outcomes, mechanism of action and opportunities for synergistic therapy. J Clin Med. 2021; 10.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT03546686, Peri-operative ipilimumab+nivolumab and cryoablation in women with triple-negative breast cancer. 2021. URL: https://clinicaltrials.gov/ct2/show/NCT03546686 (11.08.2022).

Habibi M., Kmieciak M., Graham L., et al. Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Res Treat. 2009; 114: 423‐431.-DOI: https://doi.org/10.1007/s10549-008- 0024-3.

Zhu X.Q., Lu P., Xu Z.L., et al. Alterations in immune response profile of tumor draining lymph nodes after high-intensity focused ultrasound ablation of breast cancer patients. Cells. 2021; 10.-DOI: https://doi.org/10.3390/cells10123346.

Tolba M.F., Elghazaly H., Bousoik E., et al. Novel combinatorial strategies for boosting the efficacy of immune checkpoint inhibitors in advanced breast cancers. Clin Transl Oncol. 2021; 23: 1979‐1994.

Cirincione R., di Maggio F.M., Forte G.I., et al. High-intensity focused ultrasound– and radiation therapy–induced immunomodulation: comparison and potential opportunities. Ultrasound Med Biol. 2017; 43: 398‐411.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2024