摘要
Рак молочной железы является наиболее частым злокачественным опухолевым заболеванием среди женщин. За последние два десятилетия новые технологии и скрининг рака молочной железы привели к выявлению заболевания на ранних стадиях. Поэтому чрескожные миниинвазивные технологии все чаще рассматриваются для лечения пациентов, непригодных для хирургического лечения, а также у женщин, отказывающихся от операции, или у пожилых пациентов с выраженной сопутствующей патологией, для которых хирургическое лечение может стать жизнеугрожающим методом лечения. Основными кандидатами для чрескожных миниинвазивных технологий являются больные ранним раком молочной железы с опухолями небольшого размера. Главной целью данных методик является достижение равно эффективного результата лечения в сравнении со стандартным хирургическим вмешательством. Миниинвазивные методы лечения являются удобной альтернативой с многообещающей эффективностью, меньшей стоимостью, меньшей травматизацией кожи, менее выраженным болевым синдромом и более удовлетворительными косметическими результатами. Аблационные методы, используемые при раке молочной железы, включают в себя криоаблацию, радиочастотную аблацию, микроволновую аблацию, высокоинтенсивный фокусированный ультразвук и лазерную аблацию. Целью данной статьи является обсуждение различных методик чрескожных миниинвазивных технологий в лечении рака молочной железы, оценка их клинических результатов и анализ будущих перспектив аблационной терапии.
参考
Семиглазов В.Ф. Лечение рака молочной железы: клинико-биологическое обоснование. Под ред. Проф. В.Ф. Семиглазова, В.В. Семиглазова. М., СИМК. 2017: 272.
[Semiglazov V.F. Treatment of breast cancer: clinical and biological rationale. Ed. by Prof. V.F. Semiglazov, V.V. Semiglazov. М., SIMK. 2017: 272. (In Rus)].
Nori J., Gill M.K., Meattini I., et al. The evolving role of ultrasound guided percutaneous laser ablation in elderly unresectable breast cancer patients: a feasibility pilot study. Biomed Res Int. 2018.-DOI: https://doi.org/10.1155/2018/9141746.
van de Voort E.M.F., Struik GM., Birnie E., et al. Thermal ablation as an alternative for surgical resection of small (≤2 cm) breast cancers: a meta-analysis. Clin Breast Cancer. 2021; 21: e715‐e730.
Тюляндин С.А., Артамонова Е.В., Жигулев А.Н., и др. Практические рекомендации по лекарственному лечению рака молочной железы. Практические рекомендации RUSSCO, часть 1. Злокачественные опухоли. 2023; 1 (#3s2): 157-200.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3s2-1-157-200.
[Tyulyandin S.A., Artamonova E.V., Zhigulev A.N., et al. Practical recommendations for drug treatment of breast cancer. RUSSCO practical recommendations, part 1. Malignant tumors, 2023; 13(#3s2): 157-200.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3s2-1-157-200. (In Rus)].
Habrawi Z., Melkus M.W., Khan S., et al. Cryoablation: a promising non-operative therapy for low-risk breast cancer. Am J Surg. 2021; 221: 127‐133.-DOI: https://doi.org/10.1016/j.amjsurg.2020.07.028.
van Esser S., Stapper G., van Diest P.J., et al. Ultrasound-guided laser-induced thermal therapy for small palpable invasive breast carcinomas: a feasibility study. Ann Surg Oncol. 2009; 16: 2259.-DOI: https://doi.org/10.1245/s10434-009-0544-z.
van de Voort E.M.F., Struik G.M., Koppert L.B., et al. Treatment of early-stage breast cancer with percutaneous thermal ablation, an open-label randomised phase 2 screening trial: rationale and design of the THERMAC trial. BMJ Open. 2021; 11: e052992.-DOI: https://doi.org/10.1136/bmjopen-2021-052992.
Roknsharifi S., Wattamwar K., Fishman M.D.C., et al. Image-guided microinvasive percutaneous treatment of breast lesions: where do we stand? Radiographics. 2021; 41: 945‐966.-DOI: https://doi.org/10.1148/rg.2021200156.
Peek M.C.L., Ahmed M., Napoli A., et al. Minimally invasive ablative techniques in the treatment of breast cancer: a systematic review and meta-analysis. Int J Hyperthermia. 2017; 33: 191‐202.-DOI: https://doi.org/10.1080/02656736.2016.1230232.
Consensus guideline on the use of transcutaneous and percutaneous ablation for the treatment of benign and malignant tumors of the breast. The American Society of Breast Surgeons. 2018; 3.
Fleming M.M., Holbrook A.I., Newell M.S. Update on image-guided percutaneous ablation of breast cancer. Am J Roentgenol. 2017; 208: 267‐274.-DOI: https://doi.org/10.2214/AJR.16.17129.
Littrup P.J., Jallad B., Chandiwala-Mody P., et al. Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol. 2009; 20: 1329‐1341.-DOI: https://doi.org/10.1016/J.JVIR.2009.06.029.
Imoto S., Wada N., Sakemura N., et al. Feasibility study on radiofrequency ablation followed by partial mastectomy for stage I breast cancer patients. The Breast. 2009; 18: 130‐134.-DOI: https://doi.org/10.1016/j.breast.2009.02.008.
Brenin D.R. Focused ultrasound ablation for the treatment of breast cancer. Ann Surg Oncol. 2011; 18: 3088‐3094.-DOI: https://doi.org/10. 1245/S10434-011-2011-X.
Biondetti P., Saggiante L., Ierardi A.M., et al. Interventional radiology image-guided locoregional therapies (LRTs) and immunotherapy for the treatment of HCC. Cancers (Basel). 2021; 13(22): 5797.-DOI: https://doi.org/10.3390/cancers13225797.
Schässburger K.-U., Löfgren L., Lagerstedt U., et al. Minimally-invasive treatment of early stage breast cancer: a feasibility study using radiofrequency ablation under local anesthesia. The Breast. 2014; 23: 152‐158.-DOI: https://doi.org/10.1016/j.breast.2013.12.007.
Burak W.E., Agnese D.M., Povoski S.P., et al. Radiofrequency ablation of invasive breast carcinoma followed by delayed surgical excision. Cancer. 2003; 98: 1369-1376.-DOI: https://doi.org/10.1002/CNCR.11642.
Susini T., Nori J., Olivieri S., et al. Radiofrequency ablation for minimally invasive treatment of breast carcinoma. A pilot study in elderly inoperable patients. Gynecol Oncol. 2007; 104: 304‐310.-DOI: https://doi.org/10.1016/j.ygyno.2006.08.049.
Yamamoto N., Fujimoto H., Nakamura R., et al. Pilot study of radiofrequency ablation therapy without surgical excision for T1 breast cancer: evaluation with MRI and vacuum-assisted core needle biopsy and safety management. Breast Cancer. 2011; 18: 3‐9.-DOI: https://doi.org/10.1007/S12282-010-0197-6.
Xia L-Y, Hu Q-L, Xu W-Y. Efficacy and safety of radiofrequency ablation for breast cancer smaller than 2 cm: a systematic review and meta-analysis. Front Oncol. 2021; 11.-DOI: https://doi.org/10.3389/fonc.2021.651646.
Nguyen T., Hattery E., Khatri V.P. Radiofrequency ablation and breast cancer: a review. Gland Surg. 2014; 3: 128‐135.-DOI: https://doi.org/10.3978/j.issn.2227684X.2014.03.05.
Noguchi M., Earashi M., Fujii H., et al. Radiofrequency ablation of small breast cancer followed by surgical resection. J Surg Oncol. 2006; 93: 120‐128.-DOI: https://doi.org/10.1002/JSO.20398.
Oura S., Tamaki T., Hirai I., et al. Radiofrequency ablation therapy in patients with breast cancers two centimeters or less in size. Breast Cancer. 2007; 14: 48‐54.-DOI: https://doi.org/10.2325/JBCS.14.48.
Zhou W., Zha X., Liu X., et al. US-guided percutaneous microwave coagulation of small breast cancers: a clinical study. Radiology. 2012; 263(2): 364-73.-DOI: https://doi.org/10.1148/radiol.12111901.
Izzo F., Granata V., Grassi R., et al. Radiofrequency ablation and microwave ablation in liver tumors: an update. Oncologist. 2019; 24: e990‐e1005.-DOI: https://doi.org/10.1634/theoncologist.2018-0337.
Ryan A., Byrne C., Pusceddu C., et al. CIRSE standards of practice on thermal ablation of bone tumours. Cardiovasc Intervent Radiol. 2022; 45: 591‐605.-DOI: https://doi.org/10.1007/s00270-022-03126-x.
Nieuwenhuizen S., Dijkstra M., Puijk R.S., et al. Microwave ablation, radiofrequency ablation, irreversible electroporation, and stereotactic ablative body radiotherapy for intermediate size (3–5 cm) unresectable colorectal liver metastases: a systematic review and meta-analysis. Curr Oncol Rep. 2022; 24: 793‐808.
Gabriel C., Gabriel S., Grant E.H., et al. Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews. 1998: 213-224.
Roubidoux M.A., Yang W., Stafford R.J. Image-guided ablation in breast cancer treatment. Tech Vasc Interv Radiol. 2014; 17: 49‐54.
Xu J., Wu H., Han Z., et al. Microwave ablation of benign breast tumors: a prospective study with minimum 12 months follow-up. Int J Hyperthermia. 2018; 35: 253‐261.-DOI: https://doi.org/10.1080/02656736.2018.1494340.
Yu J., Han Z.Y., Li T., et al. Microwave ablation versus nipple sparing mastectomy for breast cancer ≤5 cm: a pilot cohort study. Front Oncol. 2020; 10.-DOI: https://doi.org/10.3389/fonc.2020.546883.
Zhou W., Yu M., Pan H., et al. Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer. J Immunother Cancer. 2021; 9.-DOI: https://doi.org/10.1136/jitc-2021-002343.
Pusceddu C., Paliogiannis P., Nigri G., Fancellu A. Cryoablation in the management of breast cancer: evidence to date. Breast Cancer: Targets and Therapy. 2019; 11: 283‐292.
Беляев А.М., Прохоров Г.Г. Криогенные технологии в онкологии. Вопросы онкологии. 2015; 61(3): 317-322.
[Belyaev A.M., Prokhorov G.G. Cryogenic technologies in oncology. Voprosy Onkologii = Problems in Oncology. 2015; 61(3): 317-322. (In Rus)].
Прохоров Г.Г., Беляев А.М., Прохоров Д.Г. Основы клинической криомедицины. СПб-М., Издательство «Книга по требованию». 2017: 608.
[Prokhorov G.G., Belyaev A.M., Prokhorov D.G. Fundamentals of clinical cryomedicine. Spb-M. Publisher «Kniga po trebovaniyu». 2017: 608. (In Rus)].
Беляев А.М., Прохоров Г.Г., Захарова В.Д. Малоинвазивные криогенные технологии в лечении рака молочной железы. Обзор литературы. Вопросы онкологии. 2020; 66(2): 103-108.-DOI: https://doi.org/10.37469/0507-3758-2020-66-2-103-108.
[Belyaev A.M., Prokhorov G.G., Zakharova V.D. (2020). Minimally invasive cryogenic technologies in the treatment of breast cancer. Literature review. Voprosy Onkologii = Problems in Oncology. 2020; 66(2): 103-108.-DOI: https://doi.org/10.37469/0507-3758-2020-66-2-103-108. (In Rus)].
Cazzato R.L., de Lara C.T., BuyX., et al. Single-centre experience with percutaneous cryoablation of breast cancer in 23 consecutive nonsurgical patients. Cardiovasc Intervent Radiol. 2015; 38: 1237‐1243.-DOI: https://doi.org/10.1007/s00270-015-1181-5.
Manenti G., Scarano A.L., Pistolese C.A., et al. Subclinical breast cancer: minimally invasive approaches. Our experience with percutaneous radiofrequency ablation vs. cryotherapy. Breast Care. 2013; 8: 356‐360.-DOI: https://doi.org/10.1159/000355707.
Simmons R.M., Ballman K.V., Cox C., et al. Aphase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (alliance) Z1072. Ann Surg Oncol. 2016; 23: 2438‐2445.-DOI: https://doi.org/10.1245/s10434-016-5275-3.
Takada M., Toi M. Cryosurgery for primary breast cancers, its biological impact, and clinical outcomes. Int J Clin Oncol. 2019; 24: 608‐613.
Mauri G., Sconfienza L.M., Pescatori L.C., et al. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: a systematic review and meta-analysis. Eur Radiol. 2017; 27: 3199‐3210.-DOI: https://doi.org/10.1007/s00330-016-4668-9.
Fine R.E., Gilmore R.C., Dietz J.R., et al. Cryoablation without excision for low risk early-stage breast cancer: 3-year interim analysis of ipsilateral breast tumor recurrence in the ICE3 trial. Ann Surg Oncol. 2021; 28: 5525‐5534.-DOI: https://doi.org/10.1245/S10434-021-10501-4.
Regen-Tuero H.C., Ward R.C., Sikov W.M., Littrup P.J. Cryoablation nd immunotherapy for breast cancer: overview and rationale for combined therapy. Radiol Imaging Cancer. 2021; 3.
Bachu V.S., Kedda J., Suk I., et al. High-intensity focused ultrasound: a review of mechanisms and clinical applications. Ann Biomed Eng. 2021; 49: 1975‐1991.-DOI: https://doi.org/10.1007/S10439-021-02833-9.
Peek M.C.L., Wu F. High-intensity focused ultrasound in the treatment of breast tumours. Ecancermedicalscience. 2018; 12.
Siedek F., Yeo S.Y., Heijman E., et al. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU): technical background and overview of current clinical applications (Part 1). Rofo. 2019; 191(6): 522-530.-DOI: https://doi.org/10.1055/a-0817-5645.
Guan L., Xu G. Damage effect of high-intensity focused ultrasound on breast cancer tissues and their vascularities. World J Surg Oncol. 2016; 14.-DOI: https://doi.org/10.1186/s12957-016-0908-3.
Wei F., Chen W., Lin X. HIFU ablation as a therapy for breast tumor: a meta-analysis of 23 prospective feasibility studies. Breast Journal. 2020; 26: 1478‐1480.
Gianfelice D., Khiat A., Boulanger Y., et al. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol. 2003; 14: 1275‐1282.-DOI: https://doi.org/10.1097/01.RVI.0000092900.73329.A2.
Furusawa H., Namba K., Nakahara H., et al. The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS). Breast Cancer. 2007; 14(1): 55-8.-DOI: https://doi.org/10.2325/jbcs.14.55.
de Maar J.S., Suelmann B.B.M., Braat M.N.G.J.A., et al. Phase I feasibility study of magnetic resonance guided high intensity focused ultrasound-induced hyperthermia, lyso-thermosensitive liposomal doxorubicin and cyclophosphamide in de novo stage IV breast cancer patients: study protocol of the I-GO study. BMJ Open. 2020; 10.-DOI: https://doi.org/10.1136/bmjopen-2020-040162.
Kerbage Y., Betrouni N., Collinet P., et al. Laser interstitial thermotherapy application for breast surgery: current situation and new trends. Breast. 2017; 33: 145‐152.
Dowlatshahi K., Francescatti D.S., Bloom K.J. Laser therapy for small breast cancers. Am J Surg. 2002; 184(4): 359-63.-DOI: https://doi.org/10.1016/s0002-9610(02)00942-x.
Haraldsdóttir K.H., Ivarsson K., Götberg S., et al. Interstitial laser thermotherapy (ILT) of breast cancer. Eur J Surg Oncol. 2008; 34: 739‐745.-DOI: https://doi.org/10.1016/J.EJSO.2008.01.008.
Rai Z.L., Feakins R., Pallett L.J., et al. Irreversible electroporation (Ire) in locally advanced pancreatic cancer: a review of current clinical outcomes, mechanism of action and opportunities for synergistic therapy. J Clin Med. 2021; 10.
ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT03546686, Peri-operative ipilimumab+nivolumab and cryoablation in women with triple-negative breast cancer. 2021. URL: https://clinicaltrials.gov/ct2/show/NCT03546686 (11.08.2022).
Habibi M., Kmieciak M., Graham L., et al. Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Res Treat. 2009; 114: 423‐431.-DOI: https://doi.org/10.1007/s10549-008- 0024-3.
Zhu X.Q., Lu P., Xu Z.L., et al. Alterations in immune response profile of tumor draining lymph nodes after high-intensity focused ultrasound ablation of breast cancer patients. Cells. 2021; 10.-DOI: https://doi.org/10.3390/cells10123346.
Tolba M.F., Elghazaly H., Bousoik E., et al. Novel combinatorial strategies for boosting the efficacy of immune checkpoint inhibitors in advanced breast cancers. Clin Transl Oncol. 2021; 23: 1979‐1994.
Cirincione R., di Maggio F.M., Forte G.I., et al. High-intensity focused ultrasound– and radiation therapy–induced immunomodulation: comparison and potential opportunities. Ultrasound Med Biol. 2017; 43: 398‐411.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2024