Hereditary Breast and Ovarian Cancer: Molecular Mechanisms and Therapeutic Targets
##article.numberofdownloads## 27
##article.numberofviews## 86
pdf (Русский)

Keywords

hereditary cancer syndromes
breast cancer
early-stage ovarian cancer
germline mutations
antitumor therapy
molecular pathogenesis

How to Cite

Kuligina, E., Gorgul, Y., Yanus, G., Baskina, S., Belogubova, E., Venina, A., Belyaev, A., Togo, A., Imyanitov, E., & Sokolenko, A. (2025). Hereditary Breast and Ovarian Cancer: Molecular Mechanisms and Therapeutic Targets. Voprosy Onkologii, 71(2), OF–2162. https://doi.org/10.37469/0507-3758-2025-71-2-OF-2162

Abstract

Hereditary breast and ovarian cancers are the most common familial cancers. At least 10 % of breast cancers (BC) and approximately 20–30 % of ovarian cancers (OC) are caused by inherited genomic defects. The most studied highly penetrant genes associated with breast and ovarian cancer are BRCA1 and BRCA2, key components of the DNA double-strand break repair system. In some patients, the occurrence of breast or ovarian cancer can be explained by mutations in other genes responsible for genome stability: PALB2, CHEK2, BLM, FANCM, RECQL, MRE11, RAD51C, RAD51D, ATM, NBN, CDH1, TP53 and others. It is worth noting that about half of breast and ovarian cancer cases with signs of familial predisposition still have no genetic explanation. Tumour development in heterozygous carriers of pathogenic mutations is usually due to a two-hit mechanism, i.e. somatic inactivation of the 'normal' copy of the gene. An alternative variant of pathogenesis is constitutive suppression of the function of the affected gene (haploinsufficiency), which increases the likelihood of malignant transformation. Initially, studies of familial breast and ovarian cancer were mainly aimed at early diagnosis and prevention. To date, there is growing evidence that hereditary cancers often have molecular targets for targeted therapies. For example, the presence of inherited BRCA1/2 defects is associated with sensitivity to PARP inhibitors and platinum-based drugs. This review presents current information on the genetic mechanisms of predisposition to BC and OC and outlines the main approaches to diagnosis and treatment of this group of diseases.

https://doi.org/10.37469/0507-3758-2025-71-2-OF-2162
##article.numberofdownloads## 27
##article.numberofviews## 86
pdf (Русский)

References

Imyanitov E.N., Kuligina E.S., Sokolenko A.P., et al. Hereditary cancer syndromes. World J Clin Oncol. 2023; 14(2): 40-68.-DOI: 10.5306/wjco.v14.i2.40.

Suspitsin E.N., Imyanitov E.N. Hereditary conditions associated with elevated cancer risk in childhood. Biochemistry (Mosc). 2023; 88(7): 880-891.-DOI: 10.1134/S0006297923070039.

Sharma R., Lewis S., Wlodarski M.W. DNA Repair syndromes and cancer: insights into genetics and phenotype patterns. Front Pediatr. 2020; 8: 570084.-DOI: 10.3389/fped.2020.570084.

Adam M.P., Feldman J., Mirzaa G.M., et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle. 1993-2024.-URL: https://www.ncbi.nlm.nih.gov/books/NBK1116/.

Breast Cancer Association Consortium; Dorling L., Carvalho S., et al. Breast cancer risk genes - association analysis in more than 113,000 women. N Engl J Med. 2021; 384: 428-439.-DOI: 10.1056/NEJMoa1913948.

Hu C., Hart S.N., Gnanaolivu R., et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med. 2021;384(5):440-451.-DOI: 10.1056/NEJMoa2005936.

Sokolenko A.P., Sokolova T.N., Ni V.I., et al. Frequency and spectrum of founder and non-founder BRCA1 and BRCA2 mutations in a large series of Russian breast cancer and ovarian cancer patients. Breast Cancer Res Treat. 2020; 184(1): 229-235.-DOI: 10.1007/s10549-020-05827-8.

Mersch J., Jackson M.A., Park M., et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015; 121(2): 269-75.-DOI: 10.1002/cncr.29041.

Knudson A.G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971; 68(4): 820-3.-DOI: 10.1073/pnas.68.4.820.

Maxwell K.N., Wubbenhorst B., Wenz B.M., et al. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun. 2017; 8(1): 319.-DOI: 10.1038/s41467-017-00388-9.

Preobrazhenskaya E.V., Shleykina A.U., Gorustovich O.A., et al. Frequency and molecular characteristics of PALB2-associated cancers in Russian patients. Int J Cancer. 2021; 148(1): 203-210.-DOI: 10.1002/ijc.33317.

Iyevleva A.G., Aleksakhina S.N., Sokolenko A.P., et al. Somatic loss of the remaining allele occurs approximately in half of CHEK2-driven breast cancers and is accompanied by a border-line increase of chromosomal instability. Breast Cancer Res Treat. 2022; 192(2): 283-291.-DOI: 10.1007/s10549-022-06517-3.

Peri S., Caretti E., Tricarico R., et al. Haploinsufficiency in tumor predisposition syndromes: altered genomic transcription in morphologically normal cells heterozygous for VHL or TSC mutation. Oncotarget. 2017; 8(11): 17628-17642.-DOI: 10.18632/oncotarget.12192.

McDonnell J.E., Gild M.L., Clifton-Bligh R.J., et al. Multiple endocrine neoplasia: an update. Intern Med J. 2019; 49: 954-961.-DOI: 10.1111/imj.14394.

Kuligina E.S., Sokolenko A.P., Bizin I.V., et al. Exome sequencing study of Russian breast cancer patients suggests a predisposing role for USP39. Breast Cancer Res Treat. 2020; 179(3): 731-742.-DOI: 10.1007/s10549-019-05492-6.

Poulsen L.M., Bisgaard M.L. MUTYH Associated Polyposis (MAP). Current Genomics. 2008; 9: 420-435.-DOI: 10.2174/138920208785699562.

Magrin L., Fanale D., Brando C., et al. POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes. Oncogene. 2021; 40(40): 5893-5901.-DOI: 10.1038/s41388-021-01984-2.

Brown G.R., Simon M., Wentling C., et al. A review of inherited cancer susceptibility syndromes. JAAPA. 2020; 33(12): 10-16.-DOI: 10.1097/01.JAA.0000721648.46099.2c.

Whitworth J., Smith P.S., Martin J.E., et al. Comprehensive cancer-predisposition gene testing in an adult multiple primary tumor series shows a broad range of deleterious variants and atypical tumor phenotypes. Am J Hum Genet. 2018; 103(1): 3-18.-DOI: 10.1016/j.ajhg.2018.04.013.

Breast Cancer Association Consortium; Mavaddat N., Dorling L., et al. Pathology of tumors associated with pathogenic germline variants in 9 breast cancer susceptibility genes. JAMA Oncol. 2022; 8(3): e216744.-DOI: 10.1001/jamaoncol.2021.6744.

Fierheller C.T., Alenezi W.M., Tonin P.N. The genetic analyses of french canadians of quebec facilitate the characterization of new cancer predisposing genes implicated in hereditary breast and/or ovarian cancer syndrome families. Cancers (Basel). 2021; 13: 3406.-DOI: 10.3390/cancers13143406.

Lheureux S., Go-URLey C., Vergote I., Oza A.M. Epithelial ovarian cancer. Lancet. 2019; 393: 1240-1253.-DOI: 10.1016/S0140-6736(18)32552-2.

Loibl S., Poortmans P., Morrow M., et al. Breast cancer. Lancet. 2021; 397(10286): 1750-1769.-DOI: 10.1016/S0140-6736(20)32381-3.

Kuchenbaecker K.B., Hopper J.L., Barnes D.R., et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017; 317(23): 2402-2416.-DOI: 10.1001/jama.2017.7112.

Rebbeck T.R., Mitra N., Wan F., et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015; 313(13): 1347-61.-DOI: 10.1001/jama.2014.5985.

Milne R.L., Antoniou A.C. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr Relat Cancer. 2016; 23: 69-84.-DOI: 10.1530/ERC-16-0277.

Pietragalla A., Arcieri M., Marchetti C., et al. Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int J Gynecol Cancer. 2020; 30(11): 1803-1810.-DOI: 10.1136/ijgc-2020-001556.

Colas C., Golmard L., de Pauw A., et al. "Decoding hereditary breast cancer" benefits and questions from multigene panel testing. Breast. 2019; 45: 29-35.-DOI: 10.1016/j.breast.2019.01.002.

Yang X., Song H., Leslie G., et al. Ovarian and breast cancer risks associated with pathogenic variants in RAD51C and RAD51D. J Natl Cancer Inst. 2020; 112(12): 1242-1250.-DOI: 10.1093/jnci/djaa030.

Antoniou A.C., Foulkes W.D., Tischkowitz M. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014; 371(17): 1651-2.-DOI: 10.1056/NEJMc1410673.

Dong L., Zhang H., Zhang H., et al. The mutation landscape of multiple cancer predisposition genes in Chinese familial/hereditary breast cancer families. Cancer Biol Med. 2021; 19(6): 850-70.-DOI: 10.20892/j.issn.2095-3941.2021.0011.

Neidhardt G., Hauke J., Ramser J., et al. Association between loss-of-function mutations within the FANCM gene and early-onset familial breast cancer. JAMA Oncol. 2017; 3(9): 1245-1248.-DOI: 10.1001/jamaoncol.2016.5592.

Felicio P.S., Grasel R.S., Campacci N., et al. Whole-exome sequencing of non-BRCA1/BRCA2 mutation carrier cases at high-risk for hereditary breast/ovarian cancer. Hum Mutat. 2021; 42(3): 290-299.-DOI: 10.1002/humu.24158.

Koivuluoma S., Tervasmäki A., Kauppila S., et al. Exome sequencing identifies a recurrent variant in SERPINA3 associating with hereditary susceptibility to breast cancer. Eur J Cancer. 2021; 143: 46-51.-DOI: 10.1016/j.ejca.2020.10.033.

Shin S.J., Dodd-Eaton E.B., Peng G., et al. Penetrance of different cancer types in families with li-fraumeni syndrome: a validation study using multicenter cohorts. Cancer Res. 2020; 80: 354-360.-DOI: 10.1158/0008-5472.CAN-19-0728.

Rana H.Q., Gelman R., LaDuca H., et al. Differences in TP53 mutation carrier phenotypes emerge from panel-based testing. J Natl Cancer Inst. 2018; 110: 863-870.-DOI: 10.1093/jnci/djy001.

Kratz C.P., Freycon C., Maxwell K.N., et al. Analysis of the li-fraumeni spectrum based on an international germline TP53 variant data set: an international agency for research on cancer TP53 database analysis. JAMA Oncol. 2021; 7: 1800-1805.-DOI: 10.1001/jamaoncol.2021.4398.

Corso G., Montagna G., Figueiredo J., et al. Hereditary gastric and breast cancer syndromes related to CDH1 germline mutation: a multidisciplinary clinical review. Cancers (Basel). 2020; 12: 1598.-DOI: 10.3390/cancers12061598.

Bucksch K., Zachariae S., Aretz S., et al. Cancer risks in Lynch syndrome, Lynch-like syndrome, and familial colorectal cancer type X: a prospective cohort study. BMC Cancer. 2020; 20(1): 460.-DOI: 10.1186/s12885-020-06926-x.

Zhu Q., Zhang J., Chen Y., et al. Whole-exome sequencing of ovarian cancer families uncovers putative predisposition genes. Int J Cancer. 2020; 146: 2147-2155.-DOI: 10.1002/ijc.32545.

Stradella A., Del Valle J., Rofes P., et al. ERCC3, a new ovarian cancer susceptibility gene? Eur J Cancer. 2020; 141: 1-8.-DOI: 10.1016/j.ejca.2020.09.023.

Roberts E., Howell S., Evans D.G. Polygenic risk scores and breast cancer risk prediction. Breast. 2023; 67: 71-77.-DOI: 10.1016/j.breast.2023.01.003.

Соколенко А.П., Бройде Р.В., Ни В.И., et al. Поиск новых генов наследственного рака яичника посредством полноэкзомного анализа пациенток, продемонстрировавших выраженный ответ на платиносодержащую терапию. Вопросы онкологии. 2023; 69(4): 676-683.-DOI: 10.37469/0507-3758-2023-69-4-676-683.

[Sokolenko A.P., Broyde R.V., Ni V.I., et al. Search for novel hereditary ovarian cancer susceptibility genes through whole-exome sequencing of responders to platinum-based therapy. Voprosy Onkologii = Problems in Oncology. 2023; 69(4): 676-683.-DOI: 10.37469/0507-3758-2023-69-4-676-683 (In Rus)].

Имянитов Е.Н., Филипенко М.Л., Кекеева Т.В., Демидова И.А. Практические аспекты тестирования наследственных мутаций в генах BRCA1/2: позиция Межрегиональной организации молекулярных генетиков в онкологии и онкогематологии. Вопросы онкологии. 2022; 68: 260-266.-DOI: 10.37469/0507-3758-2022-68-3-260-266. [Imyanitov E.N., Filipenko M.L., Kekeyeva T.V., Demidova I.A. Practical aspects of BRCA1/2 testing: position of the Russian society of molecular geneticists in oncology and oncohematology. Voprosy Onkologii = Problems in Oncology. 2022; 68: 260-266.-DOI: 10.37469/0507-3758-2022-68-3-260-266 (In Rus)].

Sokolenko A.P., Bakaeva E.K., Venina A.R., et al. Ethnicity-specific BRCA1, BRCA2, PALB2, and ATM pathogenic alleles in breast and ovarian cancer patients from the North Caucasus. Breast Cancer Res Treat. 2024; 203(2): 307-315.-DOI: 10.1007/s10549-023-07135-3.

Samadder N.J., Baffy N., Giridhar K.V., et al. Hereditary cancer syndromes-a primer on diagnosis and management, part 2: gastrointestinal cancer syndromes. Mayo Clin Proc. 2019; 94: 1099-1116. 10.1016/j.mayocp.2019.01.042.

Pouptsis A., Swafe L., Patwardhan M., Stavraka C. Surgical and Systemic Treatment of Hereditary Breast Cancer: A Mini-Review With a Focus on BRCA1 and BRCA2 Mutations. Front Oncol. 2020;10:553080.-DOI: https://doi.org/10.3389/fonc.2020.553080.

Møller P., Stormorken A., Jonsrud C., et al. Survival of patients with BRCA1-associated breast cancer diagnosed in an MRI-based surveillance program. Breast Cancer Res Treat. 2013; 139: 155-161.-DOI: 10.1007/s10549-013-2540-z.

Jacobson M., Coakley N., Bernardini M., et al. Risk reduction strategies for BRCA1/2 hereditary ovarian cancer syndromes: a clinical practice guideline. Hered Cancer Clin Pract. 2021; 19: 39.-DOI: 10.1186/s13053-021-00196-9.

Eleje G.U., Eke A.C., Ezebialu I.U., et al. Risk-reducing bilateral salpingo-oophorectomy in women with BRCA1 or BRCA2 mutations. Cochrane Database Syst Rev. 2018; 8: CD012464.-DOI: 10.1002/14651858.CD012464.pub2.

Heemskerk-Gerritsen B.A.M., Jager A., Koppert L.B., et al. Survival after bilateral risk-reducing mastectomy in healthy BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat. 2019; 177: 723-733.-DOI: 10.1007/s10549-019-05345-2.

Iyevleva A.G., Imyanitov E.N. Cytotoxic and targeted therapy for hereditary cancers. Hered Cancer Clin Pract. 2016; 14: 17.-DOI: 10.1186/s13053-016-0057-2.

Imyanitov E.N. Cytotoxic and targeted therapy for BRCA1/2-driven cancers. Hered Cancer Clin Pract. 2021; 19: 36.-DOI: 10.1186/s13053-021-00193-y.

Gorodnova T.V., Sokolenko A.P., Kondratiev S.V., et al. Mitomycin C plus cisplatin for systemic treatment of recurrent BRCA1-associated ovarian cancer. Invest New Drugs. 2020; 38: 1872-1878.-DOI: 10.1007/s10637-020-00965-8.

Chan C.Y., Tan K.V., Cornelissen B. PARP Inhibitors in Cancer Diagnosis and Therapy. Clin Cancer Res. 2021; 27: 1585-1594.-DOI: 10.1158/1078-0432.CCR-20-2766.

Le Page C., Amuzu S., Rahimi K., et al. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2 mutation carriers. Semin Cancer Biol. 2021; 77: 110-126.-DOI: 10.1016/j.semcancer.2020.08.005.

Stopsack K.H. Efficacy of PARP Inhibition in metastatic castration-resistant prostate cancer is very different with non-BRCA DNA repair alterations: reconstructing prespecified endpoints for cohort b from the phase 3 PROfound trial of olaparib. Eur Urol. 2021; 79: 442-445.-DOI: 10.1016/j.eururo.2020.09.024.

Byrum A.K., Vindigni A., Mosammaparast N. Defining and Modulating 'BRCAness'. Trends Cell Biol. 2019; 29(9): 740-751.-DOI: 10.1016/j.tcb.2019.06.005.

Kuligina E.Sh., Sokolenko A.P., Mitiushkina N.V., et al. Value of bilateral breast cancer for identification of rare recessive at-risk alleles: evidence for the role of homozygous GEN1 c.2515_2519delAAGTT mutation. Fam Cancer. 2013; 12: 129-132.-DOI: 10.1007/s10689-012-9575-x.

Yadav S., LaDuca H., Polley E.C., et al. Racial and ethnic differences in multigene hereditary cancer panel test results for women with breast cancer. J Natl Cancer Inst. 2021; 113: 1429-1433.-DOI: https://doi.org/10.1093/jnci/djaa167.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025