Orbital wall reconstruction with titanium nickelide implants in cancer patients: characteristics of reparative processes and the potential for their management
##article.numberofdownloads## 137
##article.numberofviews## 220
pdf (Русский)

Keywords

nasal cavity and paranasal sinus cancers
reconstruction
implants from titanium nickelid
wound healing
magneto-laser therapy
local immunity
cytokines

How to Cite

Shtin, V., Novikov, V., Choynzonov, E., Marchenko, E., Stakheeva, M., Kucherova, T., Menshikov, K., Cheremisina, O., & Gribova, O. (2023). Orbital wall reconstruction with titanium nickelide implants in cancer patients: characteristics of reparative processes and the potential for their management. Voprosy Onkologii, 69(2), 259–267. https://doi.org/10.37469/0507-3758-2023-69-2-259-267

Abstract

Aim. To evaluate the effect of orbital wall reconstruction using titanium-nickelid implant (Ti-Ni implant) on the wound healing after surgery for nasal cavity and paranasal sinus cancers, and the possibility of managing this process.

Materials and methods. The study included 60 patients with stage Т3-4N0-1M0 nasal cavity and paranasal sinus cancers who received combined treatment at the Tomsk Cancer Research Institute from 2002 to 2021. All patients were divided into 3 groups according to the type of Ti-Ni implants used for orbital wall reconstruction. Magnetic-laser therapy with a combined MILTA-F device was administered to reduce inflammatory complications in the postoperative cavity for patients in groups 1 and 2. To assess the effect of different implant types on wound healing, dynamic endoscopic visualization was performed on the postoperative cavity, and samples were collected for cytological and histological examination. The efficacy of rehabilitation measures was evaluated based on clinical observations of the wound surface, the characteristics of wound healing process, and the detection of complications. Additionally, changes in the local immunity at the cytokine level were examined.

Results. The study revealed a direct correlation between the implant structure and the number of complications after reconstruction. The highest number of complications was detected when using porous implants (33 %). The use of mesh implants reduced the number of complications to 26 %. The best results were achieved when using the third type of implants, namely thin-profile TiNi implants with shape memory (6 %). In addition, it was found that the use of magneto-laser therapy in the postoperative period contributed to the activation of non-specific defense factors and had a positive effect on the immune status in the wound surface area.

https://doi.org/10.37469/0507-3758-2023-69-2-259-267
##article.numberofdownloads## 137
##article.numberofviews## 220
pdf (Русский)

References

Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В. и др. Практические рекомендации по лечению злокачественных опухолей головы и шеи. Malignant tumours. 2021;10(3s2-1):93–108 [Bolotina LV, Vladimirova LYu, Dengina NV, et al. Practical recommendations for the treatment of malignant tumors of the head and neck. Malignant Tumours. 2021;10(3s2-1):93108 (In Russ.)].

Каприн А.Д., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению России в 2019 году. М. : МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России. 2020:239 [Kaprin AD, Starinsky VV, Petrova GV. The state of cancer care for the population of Russia in 2019. Moscow: P.A. Herzen MNIOI - branch of the FMBA of Russia. 2020:239 (In Russ.)].

Buenztel J, Glatzel M, Kuettner K, et al. Late toxicities due to multimodal treatment of head and neck cancer (HNC). Radiotherapy and oncology. 2004;73(Suppl. 1):716.

Dutta R, Dubal P, Svider P, et al. Sinonasal malignancies: A population-based analysis of site-specific incidence and survival. Laryngoscope. 2015;125(11):24912497. doi:10.1002/lary.25465.

Shah JP, Patel SG, Singh B. Jatin Shah's Head and Neck Surgery and Oncology. Elsevier. 2020:896.

Fu K, Liu Y, Gao N, et al. Reconstruction of maxillary and orbital floor defect with free fibula flap and whole individualized titanium mesh assisted by computer techniques. J Oral Maxillofac Surg. 2017;75(8):1791.e11791.e9. doi:10.1016/j.joms.2017.03.054.

Медведев Ю.А., Сергеев Ю.Н., Янь Синь и др. Применение имплантатов из тканей никелида титана для реконструкции передней и боковой стенки верхнечелюстного синуса. Российский стоматологический журнал. 2014;18(5):20–23. [Medvedev YA, Sergeev YN, Yan Xin, et al. Use of nickel-titanium tissue implants for reconstruction of the anterior and lateral walls of the maxillary sinus. Russian Journal of Dentistry. 2014;18(5):2023 (In Russ.)].

Вишневский А.А., Казбанов В.В., Баталов М.С. Перспективы применения титановых имплантатов с заданными остеогенными свойствами. Хирургия позвоночника. 2016;13(1):50–58 [Vishnevsky A, Kazbanov V, Batalov M. Prospects of using titanium implants with predetermined osteogenic properties. Hirurgiâ pozvonočnika. 2016; 13(1):50–8 (In Russ.)]. doi:10.14531/ss2016.1.50-58.

Кирилова И.А., Садовой М.А., Подорожная В.Т. Сравнительная характеристика материалов для костной пластики: состав и свойства. Хирургия позвоночника. 2012;(3):72–83 [Kirilova IA, Sadovoy MA, Podorozhnaya VT. Comparative characteristics of materials for bone plasticity: composition and properties. Hirurgiâ pozvonočnika. 2012;(3):7283 (In Russ.)].

Лекишвили М.В., Склянчук Е. Д., Акатов В.С. и др. Костно-пластические остеоиндуктивные материалы в травматологии и ортопедии. Гений ортопедии. 2015;(4):61–67 [Lekishvili MV, Sklyanchuk ED, Akatov VS, et al. Osteoinductive bone plastic materials in traumatology and orthopedics. Orthopaedic Genius. 2015;(4):6167 (In Russ.)].

Artas G, Gul M, Acikan I, et al A comparison of different bone graft materials in peri-implant guided bone regeneration. Braz Oral Res. 2018;32:e59. doi:10.1590/1807-3107bor-2018.vol32.0059.

Datta P, Ozbolat V, Ayan B, et al. Bone tissue bioprinting for craniofacial reconstruction. Biotechnol Bioeng. 2017;114(11):24242431. doi:10.1002/bit.26349.

Demirkiran H. Bioceramics for osteogenesis, molecular and cellular advances. Regenerative Biology of the Spine and Spinal Cord. 2012;134–47. doi:10.1007/978-1-4614-4090-1_9.

Zita Gomes R, Paraud Freixas A, Han CH, et al. Alveolar ridge reconstruction with titanium meshes and simultaneous implant placement: a retrospective, multicenter clinical study. Biomed Res Int. 2016;2016:5126838. doi:10.1155/2016/5126838.

Chen B, Li W, Chen D, et al. Partial titanium mesh explantation cured post-cranioplasty implant-associated scalp infection. J Clin Neurosci. 2017;44:196202. doi:10.1016/j.jocn.2017.06.060.

Straub RH, Cutolo M, Pacifici R. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia. Semin Arthritis Rheum. 2015;45(2):2208. doi:10.1016/j.semarthrit.2015.04.014.

Поляков А.П., Ребрикова И.В. Современная онкологическая классификация дефектов верхней и нижней челюстей, комбинированных дефектов челюстно-лицевой области. Опухоли головы и шеи. 2017;7(4):10–23 [Polyakov AP, Rebrilkova IV. Modern oncological classification of defects of the upper and lower jaw, combined defects of the maxillofacial region. Head and Neck Tumors. 2017;7(4):1023 (In Russ.)].

Zhang L, Haddouti E-M, Welle K, et al. Local cellular responses to metallic and ceramic nanoparticles from orthopedic joint arthroplasty implants. Int. J. Nanomedicine. 2020;15:6705–20. doi:10.2147/ijn.s248848.

Kzhyshkowska J, Gudima A, Riabov V, et al. Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol. 2015;98(6):953–62. doi:10.1189/jlb.5vmr0415-166r.

Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. doi:10.1016/j.cell.2010.01.025.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023