Current Trends in the Search for Biomarkers of the Immune Response Checkpoint Blockers Efficacy in Colorectal Cancer
##article.numberofdownloads## 18
##article.numberofviews## 37
pdf (Русский)

Keywords

microsatellite instability
MSI-H
colorectal cancer
immunotherapy
predictive markers
tumor microenvironment
immune response checkpoint inhibitors

How to Cite

Yanus, G. A., Iyevleva, A. G., Martynenko, D. E., Ershova, A. N., Perevalova, A. A., Aleksakhina, S. N., & Imyanitov, E. N. (2025). Current Trends in the Search for Biomarkers of the Immune Response Checkpoint Blockers Efficacy in Colorectal Cancer. Voprosy Onkologii, 71(2), OF–2207. https://doi.org/10.37469/0507-3758-2025-71-2-OF-2207

Abstract

High-level microsatellite instability (MSI-H) is a major predictive marker of response to immunotherapy in patients with colorectal cancer (CRC). Despite its apparent utility, it does not accurately predict long-term benefit from immune checkpoint inhibitors (ICIs): up to half of patients with metastatic MSI-H CRC demonstrate primary or acquired resistance to therapy. Meanwhile, immunotherapy may be beneficial even in the absence of MSI-H. Considerable research effort has been devoted to identifying additional factors associated with response to ICI and finding ways to induce sensitivity to this type of treatment. This review summarizes the accumulated evidence and emerging trends in the study of factors that determine the success of immunotherapy. In particular, the importance of characteristics of the tumor microenvironment, including the subpopulation composition of the immune infiltrate; inherited and acquired characteristics of immune system function; the role of somatic mutations in various molecular signaling cascades; the role of the intestinal microbiome, etc. are discussed.

https://doi.org/10.37469/0507-3758-2025-71-2-OF-2207
##article.numberofdownloads## 18
##article.numberofviews## 37
pdf (Русский)

References

Overman M.J., McDermott R., Leach J.L., et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017; 18(9): 1182-1191.-DOI: 10.1016/S1470-2045(17)30422-9.

André T., Shiu K.K., Kim T.W., et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020; 383(23): 2207-2218.-DOI: 10.1056/NEJMoa2017699.

Lenz H.J., Van Cutsem E., Luisa Limon M., et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II checkmate 142 study. J Clin Oncol. 2022; 40(2): 161-170.-DOI: 10.1200/JCO.21.01015.

Andre Е., Elez E., Van Cutsem E., et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment for microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): First results of the CheckMate 8HW study. J Clin Oncol. 2024; 42: 3_suppl, LBA768-LBA768.

Chalabi M., Fanchi L.F., Dijkstra K.K., et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med. 2020; 26(4): 566-576.-DOI: 10.1038/s41591-020-0805-8.

Hu H., Kang L., Zhang J., et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial. Lancet Gastroenterol Hepatol. 2022; 7(1): 38-48.-DOI: 10.1016/S2468-1253(21)00348-4.

Cercek A., Lumish M., Sinopoli J., et al. PD-1 Blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med. 2022; 386(25): 2363-2376.-DOI: 10.1056/NEJMoa2201445.

Han K., Tang J.H., Liao L.E., et al. Neoadjuvant immune checkpoint inhibition improves organ preservation in T4bM0 colorectal cancer with mismatch repair deficiency: a retrospective observational study. Dis Colon Rectum. 2023; 66(10): e996-e1005.-DOI: 10.1097/DCR.0000000000002466.

Wang Z., Cheng S., Yao Y., et al. Long-term survivals of immune checkpoint inhibitors as neoadjuvant and adjuvant therapy in dMMR/MSI-H colorectal and gastric cancers. Cancer Immunol Immunother. 2024; 73(9): 182.-DOI: 10.1007/s00262-024-03764-9.

Bando H., Tsukada Y., Inamori K., et al. Preoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer. Clin Cancer Res. 2022; 28(6): 1136-1146.-DOI: 10.1158/1078-0432.CCR-21-3213.

Antoniotti C., Rossini D., Pietrantonio F., et al. GONO Foundation Investigators. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2022; 23(7): 876-887.-DOI: 10.1016/S1470-2045(22)00274-1.

Chowell D., Morris L.G.T., Grigg C.M., et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018; 359(6375): 582-587.-DOI: 10.1126/science.aao4572.

Tsai Y.Y., Qu C., Bonner J.D., et al. Heterozygote advantage at HLA class I and II loci and reduced risk of colorectal cancer. Front Immunol. 2023; 14: 1268117.-DOI: 10.3389/fimmu.2023.1268117.

Lu Z., Chen H., Jiao X., et al. Germline HLA-B evolutionary divergence influences the efficacy of immune checkpoint blockade therapy in gastrointestinal cancer. Genome Med. 2021; 13(1): 175.-DOI: 10.1186/s13073-021-00997-6.

Montesion M., Murugesan K., Jin D.X., et al. Somatic HLA class I loss is a widespread mechanism of immune evasion which refines the use of tumor mutational burden as a biomarker of checkpoint inhibitor response. Cancer Discov. 2021; 11(2): 282-292.-DOI: 10.1158/2159-8290.CD-20-0672.

Han J., Dong Y., Zhu X., et al. Assessment of human leukocyte antigen-based neoantigen presentation to determine pan-cancer response to immunotherapy. Nat Commun. 2024; 15(1): 1199.-DOI: 10.1038/s41467-024-45361-5.

Raab W.J., Mazzocchi A., Radice P., et al. Colon Cancer Immunology and Immunotherapy (CCII) study group. A microsatellite in the coding sequence of HLA-A/B is a mutation hotspot in colon cancer with microsatellite instability. Gastroenterology. 2022; 162(3): 960-963.e3.-DOI: 10.1053/j.gastro.2021.10.006.

Filip I., Wang A., Kravets O., et al. Pervasiveness of HLA allele-specific expression loss across tumor types. Genome Med. 2023; 15(1): 8.-DOI: 10.1186/s13073-023-01154-x.

Zaretsky J.M., Garcia-Diaz A., Shin D.S., et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016; 375(9): 819-29.-DOI: 10.1056/NEJMoa1604958.

Kloor M., Michel S., Buckowitz B., et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer. 2007; 121(2): 454-8.-DOI: 10.1002/ijc.22691.

Challoner B.R., Woolston A., Lau D., et al. Genetic and immune landscape evolution in MMR-deficient colorectal cancer. J Pathol. 2024; 262(2): 226-239.-DOI: 10.1002/path.6228.

Middha S., Yaeger R., Shia J., et al. Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis Oncol. 2019; 3: PO.18.00321.-DOI: 10.1200/PO.18.00321.

Zhang C., Li D., Xiao B., et al. B2M and JAK1/2-mutated MSI-H colorectal carcinomas can benefit from anti-PD-1 therapy. J Immunother. 2022; 45(4): 187-193.-DOI: 10.1097/CJI.0000000000000417.

de Vries N.L., van de Haar J., Veninga V., et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature. 2023; 613(7945): 743-750.-DOI: 10.1038/s41586-022-05593-1.

Zhu D., Ren X., Xie W., et al. Potential of gamma/delta T cells for solid tumor immunotherapy. Front Immunol. 2024; 15: 1466266.-DOI: 10.3389/fimmu.2024.1466266.

Jungbluth A.A., Frosina D., Fayad M., et al. Immunohistochemical detection of gamma/delta T lymphocytes in formalin-fixed paraffin-embedded tissues. Appl Immunohistochem Mol Morphol. 2019; 27(8): 581-583.-DOI: 10.1097/PAI.0000000000000650.

Fakih M., Raghav K.P.S., Chang D.Z., et al. Regorafenib plus nivolumab in patients with mismatch repair-proficient/microsatellite stable metastatic colorectal cancer: a single-arm, open-label, multicentre phase 2 study. EClinicalMedicine. 2023; 58: 101917.-DOI: 10.1016/j.eclinm.2023.101917.

Bortolomeazzi M., Keddar M.R., Montorsi L., et al. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts. Gastroenterology. 2021; 161(4): 1179-1193.-DOI: 10.1053/j.gastro.2021.06.064.

Borràs D.M., Verbandt S., Ausserhofer M., et al. Single cell dynamics of tumor specificity vs bystander activity in CD8+ T cells define the diverse immune landscapes in colorectal cancer. Cell Discov. 2023; 9(1): 114.-DOI: 10.1038/s41421-023-00605-4.

Cristescu R., Mogg R., Ayers M., et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018; 362(6411): eaar3593.-DOI: 10.1126/science.aar3593.

Martin S., Katainen R., Taira A., et al. Lynch syndrome-associated and sporadic microsatellite unstable colorectal cancers: different patterns of clonal evolution yield highly similar tumours. Hum Mol Genet. 2024: ddae124.-DOI: .1093/hmg/ddae124.

Albacker L.A., Wu J., Smith P., et al. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. PLoS One. 2017; 12(11): e0176181.-DOI: 10.1371/journal.pone.0176181.

Sveen A., Johannessen B., Tengs T., et al. Multilevel genomics of colorectal cancers with microsatellite instability-clinical impact of JAK1 mutations and consensus molecular subtype 1. Genome Med. 2017; 9(1): 46.-DOI: 10.1186/s13073-017-0434-0.

Mathew D., Marmarelis M.E., Foley C., et al. Combined JAK inhibition and PD-1 immunotherapy for non-small cell lung cancer patients. Science. 2024; 384(6702): eadf1329.-DOI: 10.1126/science.adf1329.

Ratovomanana T., Nicolle R., Cohen R., et al. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability. Ann Oncol. 2023; 34(8): 703-713.-DOI: 10.1016/j.annonc.2023.05.010.

Chida K., Kawazoe A., Kawazu M., et al. A low tumor mutational burden and pten mutations are predictors of a negative response to PD-1 blockade in MSI-H/dMMR gastrointestinal tumors. Clin Cancer Res. 2021; 27(13): 3714-3724.-DOI: 10.1158/1078-0432.CCR-21-0401.

Wang Z., Zhang Q., Qi C., et al. Combination of AKT1 and CDH1 mutations predicts primary resistance to immunotherapy in dMMR/MSI-H gastrointestinal cancer. J Immunother Cancer. 2022; 10(6): e004703.-DOI: 10.1136/jitc-2022-004703.

Nusrat M., Roszik J., Katkhuda R., et al. Association of PIK3CA mutations (mut) with immune engagement and clinical benefit from immunotherapy in microsatellite stable (MSS) colorectal cancer (CRC) patients (pts). Journal of Clinical Oncology. 2019; 37: 15_suppl, 3604-3604.

Martianov A.S., Mitiushkina N.V., Ershova A.N., et al. KRAS, NRAS, BRAF, HER2 and MSI status in a large consecutive series of colorectal carcinomas. Int J Mol Sci. 2023; 24(5): 4868.-DOI: 10.3390/ijms24054868.

Mulkidjan R.S., Saitova E.S., Preobrazhenskaya E.V., et al. ALK, ROS1, RET and NTRK1-3 gene fusions in colorectal and non-colorectal microsatellite-unstable cancers. Int J Mol Sci. 2023; 24(17): 13610.-DOI: 10.3390/ijms241713610.

Colle R., Lonardi S., Cachanado M., et al. BRAF V600E/RAS mutations and lynch syndrome in patients with MSI-H/dMMR metastatic colorectal cancer treated with immune checkpoint inhibitors. Oncologist. 2023; 28(9): 771-779.-DOI: 10.1093/oncolo/oyad082.

Hua H., He W., Chen N., et al. Genomic and transcriptomic analysis of MSI-H colorectal cancer patients with targetable alterations identifies clinical implications for immunotherapy. Front Immunol. 2023; 13: 974793.-DOI: 10.3389/fimmu.2022.974793.

Guinney J., Dienstmann R., Wang X., et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015; 21(11): 1350-6.-DOI: 10.1038/nm.3967.

Borràs, Daniel Morales, et al. Single cell dynamics of tumor specificity vs bystander activity in CD8+ T cells define the diverse immune landscapes in colorectal cancer. Cell Discovery. 2023; 9.1: 114.

Chida K., Kawazoe A., Suzuki T., et al. Transcriptomic profiling of MSI-H/dMMR gastrointestinal tumors to identify determinants of responsiveness to anti-PD-1 therapy. Clin Cancer Res. 2022; 28(10): 2110-2117.-DOI: 10.1158/1078-0432.CCR-22-0041.

Llosa N.J., Cruise M., Tam A., et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015; 5(1): 43-51.-DOI: 10.1158/2159-8290.CD-14-0863.

Le D.T., Uram J.N., Wang H., et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015; 372(26): 2509-20.-DOI: 10.1056/NEJMoa1500596.

Overman M.J., Lonardi S., Wong K.Y.M., et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018; 36(8): 773-779.-DOI: 10.1200/JCO.2017.76.9901.

Miyashita H., Bevins N.J., Thangathurai K., et al. The transcriptomic expression pattern of immune checkpoints shows heterogeneity between and within cancer types. Am J Cancer Res. 2024; 14(5): 2240-2252.-DOI: 10.62347/JRJP7877.

Volkov N.M., Yanus G.A., Ivantsov A.O., et al. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. Invest New Drugs. 2020; 38(3): 894-898.-DOI: 10.1007/s10637-019-00842-z.

Feng H., Zhang S., Zhou Q., et al. Intratumor tertiary lymphatic structure evaluation predicts the prognosis and immunotherapy response of patients with colorectal cancer. Front Immunol. 2024; 15: 1302903.-DOI: 10.3389/fimmu.2024.1302903.

Masuda K., Kornberg A., Miller J., et al. Multiplexed single-cell analysis reveals prognostic and nonprognostic T cell types in human colorectal cancer. JCI Insight. 2022; 7(7): e154646.-DOI: 10.1172/jci.insight.154646.

Huang Q., Wu X., Wang Z., et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell. 2022; 185(22): 4049-4066.e25.-DOI: 10.1016/j.cell.2022.09.020.

Huang H., Ge J., Fang Z., et al. Precursor exhausted CD8+T cells in colorectal cancer tissues associated with patient's survival and immunotherapy responsiveness. Front Immunol. 2024; 15: 1362140.-DOI: 10.3389/fimmu.2024.1362140.

Li J., Hu H., Qin G., et al. Biomarkers of pathologic complete response to neoadjuvant immunotherapy in mismatch repair–deficient colorectal cancer. Clin Cancer Res. 2023; 30(2): 368-378.-DOI: 10.1158/1078-0432.CCR-23-2213.

An H.J., Chon H.J., Kim C. Peripheral blood-based biomarkers for immune checkpoint inhibitors. Int J Mol Sci. 2021; 22(17): 9414.-DOI: 10.3390/ijms22179414.

Corti F., Lonardi S., Intini R. et al. The Pan-Immune-Inflammation Value in microsatellite instability-high metastatic colorectal cancer patients treated with immune checkpoint inhibitors. Eur J Cancer. 2021; 150: 155-167.-DOI: 10.1016/j.ejca.2021.03.043.

Pietrantonio F., Lonardi S., Corti F., et al. Nomogram to predict the outcomes of patients with microsatellite instability-high metastatic colorectal cancer receiving immune checkpoint inhibitors. J Immunother Cancer. 2021; 9(8): e003370.-DOI: 10.1136/jitc-2021-003370.

Saberzadeh-Ardestani B., Jones J.C., Hubbard J.M., et al. Association between survival and metastatic site in mismatch repair-deficient metastatic colorectal cancer treated with first-line pembrolizumab. JAMA Netw Open. 2023; 6(2): e230400.-DOI: 10.1001/jamanetworkopen.2023.0400.

Flecchia C., Auclin E., Alouani E., et al. Primary resistance to immunotherapy in patients with a dMMR/MSI metastatic gastrointestinal cancer: who is at risk? An AGEO real-world study. Br J Cancer. 2024; 130(3): 442-449.-DOI: 10.1038/s41416-023-02524-3.

Khorfan R., Sedighim S., Caba-Molina D., et al. Improved survival with immunotherapy for microsatellite unstable colorectal cancer with peritoneal metastases. J Surg Oncol. 2024.-DOI: 10.1002/jso.27740.

Yu J., Green M.D., Li S., et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021; 27(1): 152-164.-DOI: 10.1038/s41591-020-1131-x.

Tumeh P.C., Hellmann M.D., Hamid O., et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res. 2017; 5(5): 417-424.-DOI: 10.1158/2326-6066.CIR-16-0325.

Fakih M., Wang C., Sandhu J., et al. Immunotherapy response in microsatellite stable metastatic colorectal cancer is influenced by site of metastases. Eur J Cancer. 2024; 196: 113437.-DOI: 10.1016/j.ejca.2023.113437.

Afsari B., Kuo A., Zhang Y., et al. Supervised mutational signatures for obesity and other tissue-specific etiological factors in cancer. Elife. 2021; 10: e61082.-DOI: 10.7554/eLife.61082.

Schwartz C., Schmidt V., Deinzer A., et al. Deinzer AInnate PD-L1 limits T cell-mediated adipose tissue inflammation and ameliorates diet-induced obesity. Sci Transl Med. 2022; 14(635): eabj6879.-DOI: 10.1126/scitranslmed.abj6879.

Pasquarelli-do-Nascimento G., Machado S.A., de Carvalho J.M.A., Magalhães K.G. Obesity and adipose tissue impact on T-cell response and cancer immune checkpoint blockade therapy. Immunother Adv. 2022; 2(1): ltac015.-DOI: 10.1093/immadv/ltac015.

Cortellini A., Bersanelli M., Buti S., et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J Immunother Cancer. 2019; 7(1): 57.-DOI: 10.1186/s40425-019-0527-y.

Collet L., Delrieu L., Bouhamama A., et al. Association between body mass index and survival outcome in metastatic cancer patients treated by immunotherapy: analysis of a french retrospective cohort. Cancers (Basel). 2021; 13(9): 2200.-DOI: 10.3390/cancers13092200.

Pleguezuelos-Manzano C., Puschhof J., Rosendahl Huber A., et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature. 2020; 580(7802): 269-273.-DOI: 10.1038/s41586-020-2080-8.

Allen J., Rosendahl Huber A., Pleguezuelos-Manzano C., et al. Colon tumors in enterotoxigenic bacteroides fragilis (ETBF)-colonized mice do not display a unique mutational signature but instead possess host-dependent alterations in the APC gene. Microbiol Spectr. 2022; 10(3): e0105522.-DOI: 10.1128/spectrum.01055-22.

Joo J.E., Chu Y.L., Georgeson P., et al. Intratumoral presence of the genotoxic gut bacteria pks+ E. coli, Enterotoxigenic Bacteroides fragilis, and Fusobacterium nucleatum and their association with clinicopathological and molecular features of colorectal cancer. Br J Cancer. 2024; 130(5): 728-740.-DOI: 10.1038/s41416-023-02554-x.

Madison R.W., Hu X., Ramanan V., et al. Clustered 8-oxo-guanine mutations and oncogenic gene fusions in microsatellite-unstable colorectal cancer. JCO Precis Oncol. 2022; 6: e2100477.-DOI: 10.1200/PO.21.00477.

Jia D., Wang Q., Qi Y., et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell. 2024; 187(7): 1651-1665.e21.-DOI: 10.1016/j.cell.2024.02.022.

Jiang S.S., Xie Y.L., Xiao X.Y., et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe. 2023; 31(5): 781-797.e9.-DOI: 10.1016/j.chom.2023.04.010.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025