Abstract
Diffuse high-grade glioma is the most common highly malignant primary brain tumor with an extremely aggressive growth and an unfavorable prognosis.
The article describes a clinical case of a 10-year-old child with diffuse midline glioma, H3 K27M-mutant, who after standard chemoradiotherapy is designed as a maintenance therapy for a dendritic cell vaccine based on immunogenic carcinotesticular and GD2 antigens (CTA+ (cancer-testis antigen) GD2+ (ganglioside) vaccine). Tumor lysate was represented by glioblastoma cell culture with 96% GD2 expression. GM-CSF (granulocyte-macrophage colony-stimulating factor), IL4 (interleukin 4) and FNOα (tumor necrosis factor α) were used as the growth and differentiation factors of dendritic cells derived from peripheral blood monocytes.
Multitargeted immunotherapy with CTA+GD2+ vaccine apriori solves the evolution problem of phenotypic heterogeneity and has greater clinical and immunological efficacy in high-grade gliomas with their gradual immunoediting.
References
Swartz AM, Shen SH, Salgado MA, et al. Promising vaccines for treating glioblastoma. Expert Opin Biol Ther. 2018;18(11):115970. doi:10.1080/14712598.2018.1531846.
Улитин А.Ю., Желудкова О.Г., Иванов П.И., и др. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы. Злокачественные опухоли: Практические рекомендации RUSSCO. 2022(#3s2):11340. [Ulitin AYu, Zheludkova OG, Ivanov PI, et al. Practical recommendations for the drug treatment of primary tumors of the central nervous system. Malignant tumors: RUSSCO Practice Guidelines. 2022 (#3s2):11340 (In Russ.)]. doi:10.18027/2224-5057-2022-12-3s2-113-140.
Балдуева И.А., Новик А.В., Ефремова Н.А., и др. Эффективность лечения первичных опухолей центральной нервной системы аутологичной дендритно-клеточной вакциной CaTeVac. Вопросы онкологии. 2022;(приложение 3):157. [Baldueva IA, Novik AV, Efremova NA, et al. Efficiency of treatment of primary tumors of the central nervous system with autologous dendritic cell vaccine CaTeVac. Voprosy Onkologii. 2022;(Appendix 3):157 (In Russ.)].
Ellingson BM, Wen PY, Cloughesy TF. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics. 2017;14(2):30720. doi:10.1007/s13311-016-0507-6.
Новик А.В., Гирдюк Д.В., Кузнецова А.И., Балдуева И.А. Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова» Министерства здравоохранения Российской Федерации. Способ определения значимости различий результатов измерения субпопуляции лимфоцитов методом проточной цитофлюориметрии. Патент Рос. Фед. № 2720411. 2020, приоритет от 23.12.2019. [Novik AV, Girduk DV, Kuznetsova AI, Baldueva IA. N.N. Petrov National Medical Research Center for Oncology, MoH of Russia. Method for determining the significance of differences in the results of measuring lymphocyte subpopulation by flow cytofluorimetry. Patent of the Russian Federation. Fed. №. 2720411. 2020, priority of December 23, 2019 (In Russ.)].
Harada M, Ishihara Y, Itoh K, et al. Kinesin superfamily protein-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A24+ glioma patients. Oncol Rep. 2007;17(3):62936.
Kurdi M, Butt NS, Baeesa S, et al. Sensitivity assessment of wilms tumor gene (WT1) expression in glioblastoma using qPCR and immunohistochemistry and its association with IDH1 mutation and recurrence interval. Biologics. 2021;15:28997. doi:10.2147/BTT.S323358.
Shen L, Sun R, Kan S, et al. EphA2, vascular endothelial growth factor, and vascular endothelial growth factor correlate with adverse outcomes and poor survival in patients with glioma. Medicine. 2021;100(3):e23985. doi:10.1097/MD.0000000000023985.
Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. Exp Mol Pathol. 2018;105(2):16674. doi:10.1016/j.yexmp.2018.07.007.
Chistiakov DA, Chekhonin IV, Gurina OI, et al. Approaches to improve efficiency of dendritic cell-based therapy of high grade gliomas. Curr Pharm Des. 2016;22(37):573851. doi:10.2174/1381612822666160719110618.
Muragaki Y, Maruyama T, Iseki H, et al. Phase I/IIa trial of autologous formalin-fixed tumor vaccine concomitant with fractionated radiotherapy for newly diagnosed glioblastoma. Clinical article. J Neurosurg. 2011;115(2):24855. doi:10.3171/2011.4.JNS10377.
Yamanaka R, Homma J, Yajima N, et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005;11(11):41607. doi:10.1158/1078-0432.CCR-05-0120.
De Vleeschouwer S, Fieuws S, Rutkowski S, et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(10):3098104. doi:10.1158/1078-0432.CCR-07-4875.
Molenaar RJ, Maciejewski JP, Wilmink JW, et al. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene. 2018;37(15):194960. doi:10.1038/s41388-017-0077-z.
Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 2001;61(3):8427.
Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(4):76472. doi:10.1158/1078-0432.CCR-12-3002.
Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front Oncol. 2020;10:1000. doi:10.3389/fonc.2020.01000.
Wingerter A, El Malki K, Sandhoff R, et al. Exploiting gangliosides for the therapy of ewing's sarcoma and H3K27M-mutant diffuse midline glioma. Cancers. 2021;13(3). doi:10.3390/cancers13030520.
Troschke-Meurer S, Zumpe M, Meißner L, et al. Chemotherapeutics used for high-risk neuroblastoma therapy improve the efficacy of anti-GD2 antibody dinutuximab beta in preclinical spheroid models. Cancers. 2023;15(3). doi:10.3390/cancers15030904.
Борокшинова К.М., Кулева С.А., Балдуева И.А., и др. Использование вакцинного препарата на основе нового иммунологического адъюванта у пациента с диффузной срединной глиальной опухолью с мутацией H3K27M. Российский журнал детской гематологии и онкологии. 2022;(S1):345. [Borokshinova KM, Kulyova SA, Baldueva IA, et al. Use of a vaccine preparation based on a new immunological adjuvant in a patient with diffuse medial glial tumor with H3K27M mutation. Russian Journal of Pediatric Hematology and Oncology. 2022;(S1):345 (In Russ.)].
Кулева С.А., Варфоломеева С.Р., Киргизов К.И., и др. Дисиалоганглиозид GD2 как мишень для таргетной иммунотерапии солидных опухолей у детей. Вопросы онкологии. 2022;(приложение 3):27980 [Kulyova SA, Varfolomeeva SR, Kirgizov KI, et al. Disialoganglioside GD2 as a target for targeted immunotherapy of solid tumors in children. Voprosy Onkologii. 2022;(Supplement 3):27980 (In Russ.)].
Кулева С.А., Артемьева А.С., Балдуева И.А., и др. Первый опыт применения антиGD2 моноклональных антител при лечении ребенка с веретеноклеточной рабдомиосаркомой в НМИЦ онкологии им. Н.Н. Петрова. Вопросы онкологии. 2022;(приложение 3):2834. [Kulyova SA, Artemyeva AS, Baldueva IA, et al. First experience with anti-GD2 monoclonal antibodies in the treatment of a child with spindle cell rhabdomyosarcoma at the N.N. Petrov National Medical Research Center of Oncology. Voprosy Onkologii. 2022;(Appendix 3):2834. (In Russ.)].
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2023