TP53 Mutation Type and Platinum-Free Interval in Patients with High-Grade Serous Ovarian Cancer
pdf (Русский)

Keywords

BRCA1/2 mutation
high-grade serous ovarian carcinoma
TP53 mutation
platinum-free interval

How to Cite

Sokolenko, A. P., Gorodnova, T. V., Kotiv, K. B., Berlev, I. V., & Imyanitov, E. N. (2024). TP53 Mutation Type and Platinum-Free Interval in Patients with High-Grade Serous Ovarian Cancer. Voprosy Onkologii, 70(3), 550–556. https://doi.org/10.37469/0507-3758-2024-70-3-550-556

Abstract

I

Introduction. Alteration of p53 function is a driving event in high-grade serous ovarian cancer (HGSOC). There are two main functional types of TP53 mutations: inactivating mutations associated with loss of gene expression (loss-of-function, LOF) and substitutions that confer novel oncogenic functions to p53 (gain-of-function).

Aim. To investigate whether the type of TP53 mutations (missense mutations in the DNA-binding domain (DBD)) affects the regrowth of micrometastases in the absence of cytotoxic exposure and thus the duration of the platinum-free interval (PFI) in patients with HGSOC.

Materials and Methods. The duration of PFI was analyzed in 60 HGSOC patients treated at the N.N. Petrov NMRC of Oncology between 2017 and 2023. The study included patients with known BRCA1/2 status who had completed adjuvant platinum-based therapy and were disease-free at the end of treatment. Somatic TP53 mutations were detected by next-generation sequencing.

Results. In BRCA1/2-associated cancers, significant differences in PFI duration were observed between patients with LOF and DBD TP53 mutations (median PFI 55.9 (95 % CI 12.5-99.4) and 11.5 (95 % CI 3.4-19.6) months, respectively (p = 0.04)). PFI > 12 months was observed more frequently for LOF mutations than for DBD missense mutations (10/11 [91 %] vs. 8/17 [47 %], p = 0.04). No such difference was observed in sporadic cancers.

Conclusion. In BRCA1/2-associated ovarian cancer, the type of TP53 mutations correlates with the duration of PFI and the frequency of achieving PFI>12 months. Analysis of the p53 status in HGSOC may improve the possibilities for personalized treatment of ovarian cancer.

https://doi.org/10.37469/0507-3758-2024-70-3-550-556
pdf (Русский)

References

The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474: 609-615.-DOI: https://doi.org/10.1038/nature10166.

Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017; 36(28): 3943-3956.-DOI: https://doi.org/10.1038/onc.2016.502.

The TP53 Database. National Cancer Institute (NCI) of the National Institutes of Health. 2023. (17.04.2024) URL: https://tp53.isb-cgc.org.

Zhang Y., Cao L., Nguyen D., Lu H. TP53 mutations in epithelial ovarian cancer. Transl Cancer Res. 2016; 5(6): 650-663.-DOI: https://doi.org/10.21037/tcr.2016.08.40.

Alvarado-Ortiz E., de la Cruz-López K.G., Becerril-Rico J., et al. Mutant p53 gain-of-function: role in cancer development, progression, and therapeutic approaches. Front Cell Dev Biol. 2021; 8: 607670.-DOI: https://doi.org/10.3389/fcell.2020.607670.

Bieging K.T., Mello S.S., Attardi L.D. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014; 14(5): 359-370.-DOI: https://doi.org/10.1038/nrc3711.

Cоколенко А.П., Иванцов А.О., Городнова Т.В., et al. Иммунное микроокружение в серозных карциномах яичника высокой степени злокачественности: ассоциация c молекулярными характеристиками и ответ на стандартную неоадъювантную терапию. Вопросы онкологии. 2023; 69(1): 74-81.-DOI: https://doi.org/10.37469/0507-3758-2023-69-1-74-81. [Sokolenko A.P., Ivantsov A.O., Gorodnova T.V., et al. Immune microenvironment in high-grade serous ovarian carcinomas: association with molecular profiles and neoadjuvant therapy outcome. Voprosy Onkologii = Problems in Oncology. 2023; 69(1): 74-81.-DOI: https://doi.org/10.37469/0507-3758-2023-69-1-74-81. (In Rus)].

Holstege H., Joosse S.A., van Oostrom C.T., et al. High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res. 2009; 69(8): 3625-3633.-DOI: https://doi.org/10.1158/0008-5472.CAN-08-3426.

Sokolenko A.P., Gorodnova T.V., Bizin I.V., et al. Molecular predictors of the outcome of paclitaxel plus carboplatin neoadjuvant therapy in high-grade serous ovarian cancer patients. Cancer Chemother Pharmacol. 2021; 88(3): 439-450.-DOI: https://doi.org/10.1007/s00280-021-04301-6.

Kang H.J., Chun S.M., Kim K.R., et al. Clinical relevance of gain-of-function mutations of p53 in high-grade serous ovarian carcinoma. PLoS One. 2013; 8(8): e72609.-DOI: https://doi.org/10.1371/journal.pone.0072609.

Sabapathy K., Lane D.P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2018; 15(1): 13-30.-DOI: https://doi.org/10.1038/nrclinonc.2017.151.

Iyevleva A.G., Imyanitov EN. Cytotoxic and targeted therapy for hereditary cancers. Hered Cancer Clin Pract. 2016; 14(1): 17.-DOI: https://doi.org/10.1186/s13053-016-0057-2.

Tuna M., Ju Z., Yoshihara K., et al. Clinical relevance of TP53 hotspot mutations in high-grade serous ovarian cancers. Br J Cancer. 2020; 122: 405-412.-DOI: https://doi.org/10.1038/s41416-019-0654-8.

González-Martín A., Harter P., Leary A., et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023; 34(10): 833-848.-DOI: https://doi.org/10.1016/j.annonc.2023.07.011.

Konstantinopoulos P.A., Ceccaldi R., Shapiro G.I., D'Andrea A.D. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 2015; 5(11): 1137-1154.-DOI: https://doi.org/10.1158/2159-8290.CD-15-0714.

Liu G., McDonnell T.J., Montes de Oca Luna R., et al. High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA. 2000; 97(8): 4174-4179.-DOI: https://doi.org/10.1073/pnas.97.8.4174.

Mantovani F., Collavin L., Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019; 26(2): 199-212.-DOI: https://doi.org/10.1038/s41418-018-0246-9.

Tang Q., Efe G., Chiarella A.M., et al. Mutant p53 regulates Survivin to foster lung metastasis. Genes Dev. 2021; 35(7-8): 528-541.-DOI: https://doi.org/10.1101/gad.340505.120.

Kennedy R.D., Quinn J.E., Mullan P.B., et al. The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst. 2004; 96(22): 1659-1668.-DOI: https://doi.org/10.1093/jnci/djh312.

Wahl A.F., Donaldson K.L., Fairchild C., et al. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med. 1996; 2(1): 72-79.-DOI: https://doi.org/10.1038/nm0196-72.

Kupryjanczyk J., Kraszewska E., Ziolkowska-Seta I., et al. TP53 status and taxane-platinum versus platinum-based therapy in ovarian cancer patients: a non-randomized retrospective study. BMC Cancer. 2008; 8: 27.-DOI: https://doi.org/10.1186/1471-2407-8-27.

Etemadmoghadam D., Weir B.A., Au-Yeung G., et al. Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc Natl Acad Sci USA. 2013; 110(48): 19489-19494.-DOI: https://doi.org/10.1073/pnas.1314302110.

Macintyre G., Goranova T.E., De Silva D., et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet. 2018; 50(9): 1262-1270.-DOI: https://doi.org/10.1038/s41588-018-0179-8.

Köbel M., Ronnett B.M., Singh N., et al. Interpretation of P53 Immunohistochemistry in Endometrial Carcinomas: Toward Increased Reproducibility. Int J Gynecol Pathol. 2019; 38: S123-S131.-DOI: https://doi.org/10.1097/PGP.0000000000000488.

Ledermann J., Harter P., Gourley C., et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012; 366(15): 1382-1392.-DOI: https://doi.org/10.1056/NEJMoa1105535.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024