Abstract
Introduction. Exhaled breath analysis represents a promising non-invasive approach for diagnosing laryngeal, oral cavity, and pharyngeal cancers. This method is based on the premise that cancer cell metabolism differs from healthy cells, resulting in the production of specific volatile organic compounds.
Aim. To evaluate the diagnostic performance of a multisensor gas analysis system combined with an artificial neural network for detecting upper respiratory tract cancer at early (I-II) and advanced (III-IV) stages using exhaled breath samples.
Material and Methods. The study included 78 patients with oral cavity, laryngeal, and hypopharyngeal cancers, along with 47 healthy volunteers. Breath analysis was performed using a custom-developed diagnostic device that detects volatile compounds through an array of semiconductor sensors, with subsequent data processing by a neural network.
Results. All experiments were conducted using exhaled air. The neural network demonstrated high performance in distinguishing cancer patients from healthy volunteers (n = 30 patients vs 35 controls), achieving 93 % sensitivity and 83 % specificity. For staging classification between early (I-II) and advanced (III-IV) disease, the system achieved 81 % sensitivity and 58 % specificity, with an overall accuracy of 69 %.
Conclusion. The developed non-invasive method achieved 88 % diagnostic accuracy for detecting upper respiratory tract cancer across all stages (I-IV) using exhaled breath samples. The system demonstrated 69 % accuracy in specifically identifying early-stage (I-II) cancers within the full patient cohort.
References
Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Состояние онкологической помощи населению России в 2023 году. − Москва: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2024: 262(илл.).-ISBN: 978-5-85502-297-1. [Ed. by A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. The state of oncological care for the population of Russia in 2023. - Moscow: P.A. Herzen Moscow Oncology Research Institute - branch of the National Medical Research Center of Radiology of the Ministry of Health of the Russian Federation. 2024: 262(ill.).-ISBN: 978-5-85502-297-1 (In Rus)].
Siegel R.L., Giaquinto A.N., Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024; 74(1): 12‐49.-DOI: https://doi.org/10.3322/caac.21820.
Laura Q.M., Chow, L.Q. Head and neck cancer. N Engl J Med. 2020; 382, 60-72.-DOI: https://doi.org/10.1056/NEJMra1715715.
Johnson D.E., Burtness B., Leemans C.R., et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020; 6, 1-22.-DOI: https://doi.org/10.1038/s41572-020-00224-3.
Schutte H.W., Heutink F., Wellenstein D.J., et al. Impact of time to diagnosis and treatment in head and neck cancer: A systematic review. Otolaryngol Head Neck Surg. 2020; 162, 446-457.-DOI: https://doi.org/10.1177/0194599820906387.
Patterson R.H., Fischman V.G., Wasserman I., et al. Global burden of head and neck cancer: Economic consequences, health, and the role of surgery. Otolaryngol Head Neck Surg. 2020; 162: 296-303.-DOI: https://doi.org/10.1177/0194599819897265.
Johnson D.E., Burtness B., Leemans C.R., et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020; 6: 92.-DOI: https://doi.org/10.1038/s41572-020-00224-3.
Abderrahman B. Exhaled breath biopsy: A new cancer detection paradigm. Future Oncol. 2019; 15: 1679-1682.-DOI: https://doi.org/10.2217/fon-2019-0091.
Belizário J.E., Faintuch J., Malpartida M.G. Breath biopsy and discovery of exclusive volatile organic compounds for diagnosis of infectious diseases. Front Cell Infect Microbiol. 2021; 10: 564194.-DOI: https://doi.org/10.3389/fcimb.2020.564194.
Кульбакин Д.Е., Чойнзонов Е.Л., Федорова И.К., et al. Оптимизация диагностики рака верхних дыхательных путей на основе газоанализа выдыхаемого воздуха. Опухоли головы и шеи. 2024; 14(3): 14-21.-DOI: https://doi.org/10.17650/2222-1468-2024-14-3-14-21. [Kulbakin D.E., Choinzonov E.L., Fedorova I.K., et al. Optimization of upper respiratory tract cancer diagnosis method based on exhaled breath gas analysis. Opukholi Golovy i Shei = Head and Neck Tumors. 2024; 14(3): 14-21.-DOI: https://doi.org/10.17650/2222-1468-2024-14-3-14-21 (In Rus)].
Chernov V.I., Choynzonov E.L., Kulbakin D.E., et al. Cancer diagnosis by neural network analysis of data from semiconductor sensors. Diagnostics. 2020; 10(9): 677.-DOI: https://doi.org/10.3390/diagnostics10090677.
Кульбакин Д.Е., Чойнзонов Е.Л., Федорова И.К., et al. Неинвазивная диагностика злокачественных новообразований верхних дыхательных путей на основе анализа маркеров в выдыхаемом воздухе. Сибирский онкологический журнал. 2023; 22(6): 7-15.-DOI: https://doi.org/10.21294/1814-4861-2023-22-6-7-15. [Kulbakin D.E., Choynzonov E.L., Fedorova I.K., et al. Non-invasive diagnosis of upper airway malignancies based on the analysis of markers in exhaled air. Siberian Journal of Oncology. 2023; 22(6): 7-15.-DOI: https://doi.org/10.21294/1814-4861-2023-22-6-7-15 (In Rus)].
Pezzotti N., Lelieveldt B.P.F., Maaten L. van der, et al. Approximated and user steerable tSNE for progressive visual analytics. IEEE Trans Vis Comput Graph. 2016; 23(7): 1077-2626.-DOI: https://doi.org/10.1109/tvcg.2016.2570755.
Kumar P., Gupta S., Das B.C. Saliva as a potential non-invasive liquid biopsy for early and easy diagnosis/prognosis of head and neck cancer. Transl Oncol. 2024; 40: 101827.-DOI: https://doi.org/10.1016/j.tranon.2023.101827.
Guenette J.P. Radiologic evaluation of the head and neck cancer patient. Hematol Oncol Clin North Am. 2021; 35: 863-873.-DOI: https://doi.org/10.1016/j.hoc.2021.05.001.
Idrees M., Farah C.S., Sloan P., et al. Oral brush biopsy using liquid-based cytology is a reliable tool for Oral cancer screening: A cost-utility analysis: Oral brush biopsy for oral cancer screening. Cancer Cytopathology. 2022; 130(9): 740-748.-DOI: https://doi.org/10.1002/cncy.22599.
Kok R., van Schaijik B., Johnson N.W., et al. Breath biopsy, a novel technology to identify head and neck squamous cell carcinoma: A systematic review. Oral Dis. 2023; 29(8): 3034-3048.-DOI: https://doi.org/10.1111/odi.14305.
Haripriya P., Rangarajan M., Pandya H.J. Breath VOC analysis and machine learning approaches for disease screening: a review. J Breath Res. 2023; 17(2).-DOI: https://doi.org/10.1088/1752-7163/acb283.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025
