使用多感測器氣體分析綜合體和人工智慧診斷早期和廣泛階段上呼吸道癌症的可能性
##article.numberofdownloads## 2
##article.numberofdownloads## 1
##article.numberofviews## 11
pdf (Русский)
pdf suppl (Русский)

关键词

上呼吸道癌
標記
非侵入性診斷
呼出的空氣
感測器氣體分析系統
神經網路

How to Cite

Кульбакин, Д. Е., 切爾諾夫弗., Смолина, Е. А., 喬因佐諾夫葉., 費多羅娃伊., 奧布霍德斯卡婭 埃. V., 奧布霍茨基阿., 蔡弗., 羅季奧諾夫葉., 磨坊主謝., 拉孔金弗., & 薩奇科夫維. (2025). 使用多感測器氣體分析綜合體和人工智慧診斷早期和廣泛階段上呼吸道癌症的可能性. VOPROSY ONKOLOGII, 71(6), OF–2419. https://doi.org/10.37469/0507-3758-2025-71-6-OF-2419

摘要

相關性。透過呼出氣體分析診斷喉部、口腔和咽部腫瘤是腫瘤學中一個很有前景的非侵入性研究方向。此方法基於癌細胞代謝不同於健康細胞的概念,這些差異可以表現為特定揮發性有機化合物 (VOC) 的形成或其濃度的變化。目的。研究感測氣體分析裝置和人工神經網路在早期 (I-II) 期和廣泛期 (III-IV) 上呼吸道癌症患者呼出氣體樣本研究中的診斷能力。材料和方法。研究納入了 78 名口腔癌、喉癌和喉咽癌患者以及 47 名健康志願者。該研究使用作者開發的診斷裝置分析了受試者的呼出氣體樣本,該裝置使用一組半導體感測器檢測吸入空氣中的揮發性化合物,然後對數據進行神經網路分析。結果。基於這些感測器的訊號,神經網路對各期上呼吸道惡性腫瘤患者進行了分類和識別。平均準確率為89%,特異性為85%,敏感度為97%。對於早期(I-II期)上呼吸道癌症,準確率、特異性和敏感度分別為85%、75%和90%。結論:無論早期或晚期患者,基於呼出氣樣本的上呼吸道癌症非侵入性診斷方法均具有較高的診斷準確率。

https://doi.org/10.37469/0507-3758-2025-71-6-OF-2419
##article.numberofdownloads## 2
##article.numberofdownloads## 1
##article.numberofviews## 11
pdf (Русский)
pdf suppl (Русский)

参考

Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Состояние онкологической помощи населению России в 2023 году. − Москва: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2024: 262(илл.).-ISBN: 978-5-85502-297-1. [Ed. by A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. The state of oncological care for the population of Russia in 2023. - Moscow: P.A. Herzen Moscow Oncology Research Institute - branch of the National Medical Research Center of Radiology of the Ministry of Health of the Russian Federation. 2024: 262(ill.).-ISBN: 978-5-85502-297-1 (In Rus)].

Siegel R.L., Giaquinto A.N., Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024; 74(1): 12‐49.-DOI: https://doi.org/10.3322/caac.21820.

Laura Q.M., Chow, L.Q. Head and neck cancer. N Engl J Med. 2020; 382, 60-72.-DOI: https://doi.org/10.1056/NEJMra1715715.

Johnson D.E., Burtness B., Leemans C.R., et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020; 6, 1-22.-DOI: https://doi.org/10.1038/s41572-020-00224-3.

Schutte H.W., Heutink F., Wellenstein D.J., et al. Impact of time to diagnosis and treatment in head and neck cancer: A systematic review. Otolaryngol Head Neck Surg. 2020; 162, 446-457.-DOI: https://doi.org/10.1177/0194599820906387.

Patterson R.H., Fischman V.G., Wasserman I., et al. Global burden of head and neck cancer: Economic consequences, health, and the role of surgery. Otolaryngol Head Neck Surg. 2020; 162: 296-303.-DOI: https://doi.org/10.1177/0194599819897265.

Johnson D.E., Burtness B., Leemans C.R., et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020; 6: 92.-DOI: https://doi.org/10.1038/s41572-020-00224-3.

Abderrahman B. Exhaled breath biopsy: A new cancer detection paradigm. Future Oncol. 2019; 15: 1679-1682.-DOI: https://doi.org/10.2217/fon-2019-0091.

Belizário J.E., Faintuch J., Malpartida M.G. Breath biopsy and discovery of exclusive volatile organic compounds for diagnosis of infectious diseases. Front Cell Infect Microbiol. 2021; 10: 564194.-DOI: https://doi.org/10.3389/fcimb.2020.564194.

Кульбакин Д.Е., Чойнзонов Е.Л., Федорова И.К., et al. Оптимизация диагностики рака верхних дыхательных путей на основе газоанализа выдыхаемого воздуха. Опухоли головы и шеи. 2024; 14(3): 14-21.-DOI: https://doi.org/10.17650/2222-1468-2024-14-3-14-21. [Kulbakin D.E., Choinzonov E.L., Fedorova I.K., et al. Optimization of upper respiratory tract cancer diagnosis method based on exhaled breath gas analysis. Opukholi Golovy i Shei = Head and Neck Tumors. 2024; 14(3): 14-21.-DOI: https://doi.org/10.17650/2222-1468-2024-14-3-14-21 (In Rus)].

Chernov V.I., Choynzonov E.L., Kulbakin D.E., et al. Cancer diagnosis by neural network analysis of data from semiconductor sensors. Diagnostics. 2020; 10(9): 677.-DOI: https://doi.org/10.3390/diagnostics10090677.

Кульбакин Д.Е., Чойнзонов Е.Л., Федорова И.К., et al. Неинвазивная диагностика злокачественных новообразований верхних дыхательных путей на основе анализа маркеров в выдыхаемом воздухе. Сибирский онкологический журнал. 2023; 22(6): 7-15.-DOI: https://doi.org/10.21294/1814-4861-2023-22-6-7-15. [Kulbakin D.E., Choynzonov E.L., Fedorova I.K., et al. Non-invasive diagnosis of upper airway malignancies based on the analysis of markers in exhaled air. Siberian Journal of Oncology. 2023; 22(6): 7-15.-DOI: https://doi.org/10.21294/1814-4861-2023-22-6-7-15 (In Rus)].

Pezzotti N., Lelieveldt B.P.F., Maaten L. van der, et al. Approximated and user steerable tSNE for progressive visual analytics. IEEE Trans Vis Comput Graph. 2016; 23(7): 1077-2626.-DOI: https://doi.org/10.1109/tvcg.2016.2570755.

Kumar P., Gupta S., Das B.C. Saliva as a potential non-invasive liquid biopsy for early and easy diagnosis/prognosis of head and neck cancer. Transl Oncol. 2024; 40: 101827.-DOI: https://doi.org/10.1016/j.tranon.2023.101827.

Guenette J.P. Radiologic evaluation of the head and neck cancer patient. Hematol Oncol Clin North Am. 2021; 35: 863-873.-DOI: https://doi.org/10.1016/j.hoc.2021.05.001.

Idrees M., Farah C.S., Sloan P., et al. Oral brush biopsy using liquid-based cytology is a reliable tool for Oral cancer screening: A cost-utility analysis: Oral brush biopsy for oral cancer screening. Cancer Cytopathology. 2022; 130(9): 740-748.-DOI: https://doi.org/10.1002/cncy.22599.

Kok R., van Schaijik B., Johnson N.W., et al. Breath biopsy, a novel technology to identify head and neck squamous cell carcinoma: A systematic review. Oral Dis. 2023; 29(8): 3034-3048.-DOI: https://doi.org/10.1111/odi.14305.

Haripriya P., Rangarajan M., Pandya H.J. Breath VOC analysis and machine learning approaches for disease screening: a review. J Breath Res. 2023; 17(2).-DOI: https://doi.org/10.1088/1752-7163/acb283.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025