Молекулярные механизмы множественной лекарственной устойчивости глиобластом человека

Ключевые слова

множественная лекарственная устойчивость
факторы роста


В обзоре обсуждается феномен множественной лекарственной устойчивости (МЛУ) глиобластом (ГБ) в контексте экспрессии белков-переносчиков семейства ABC и процессов пролиферации, ангиогенеза, рецидивирования и гибели. Акцент делается на выявлении молекулярных мишеней среди факторов роста, рецепторов, белков сигнальной трансдукции, микроРНК, факторов транскрипции, протоонкогенов, генов-супрессоров опухолей и их полиморфных вариантов (SNP) для разработки и создания целевых противоопухолевых препаратов.


Библиографические ссылки

Laws E.R., Parney I.F., Huang W. et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J. Neurosurg. 2003; 99: 467–73.

Scoccianti S., Krengli M., Marrazzo L. et al. Hypofractionated radiotherapy with simultaneous integrated boost (SIB) plus temozolomide in good prognosis patients with glioblastoma: a multicenter phase II study by the Brain Study Group of the Italian Association of Radiation Oncology (AIRO). Radiol. Med. 2018;123(1): 48‒62.

Kaka N., Hafazalla K., Samawi H. et al. Progression-Free but No Overall Survival Benefit for Adult Patients with Bevacizumab Therapy for the Treatment of Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis. Cancers (Basel). 2019; 11(11):1723.

deSouza R.M., Shaweis H., Han C. et al. Has the survival of patients with glioblastoma changed over the years? Br. J Cancer. 2016; 114(2):146-150.

Cunha ML.V.D., Maldaun M.V.C. Metastasis from glioblastoma multiforme: a meta-analysis. Rev Assoc. Med. Bras. 2019; 65(3):424-433.

Maraka S., Janku F. BRAF alterations in primary brain tumors. Discov Med. 2018;26(141):51‒60.

George A.M. ABC Transporters - 40 Years on. Springer, 2015: 376.

Zhou S.-F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008; 38(7-8):802‒832.

Wang D., Wang C., Wang L. et al. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv. 2019; 26(1):551-565.

Coyle B., Kessler M., Sabnis D.H., Kerr I.D. ABCB1 in children's brain tumours. Biochem Soc. Trans. 2015; 43(5):1018-22.

Yang J.M., Vassil A.D., Hait W.N. Activation of phospholipase C induces the expression of the multidrug resistance (MDR1) gene through the Raf-MAPK pathway. Mol. Pharmacol. 2001; 60(4):674-680.

Bark H., Choi C.H. PSC833, cyclosporine analogue, downregulates MDR1 expression by activating JNK/c-Jun/AP-1 and suppressing NF-kappaB. Cancer Chemother. Pharmacol. 2010; 65(6):1131-1136.

Hui RC., Francis R.E., Guest S.K. et al. Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol. Cancer Ther. 2008; 7(3):670-678.

Iorio A.L., da Ros M., Fantappiè O. et al. Blood-brain barrier and breast cancer resistance protein: A limit to the therapy of cns tumors and neurodegenerative diseases. Anticancer Agents Medi. Chem. 2016; 16(7):810-815.

de Gooijer M.C., Zhang P., Weijer R., Buil LCM., Beijnen J.H., van Tellingen. The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int. J. Cancer. 2018; 142(2):381-391.

Bhuvanalakshmi G., Arfuso F., Millward M., Dharmarajan A., Warrier S. Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties. PLoS One. 2015; 10(6): e0127517.

Harding H.P., Zhang Y., Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999; 397: 271–274.

Zhang H.D., Jiang L.H., Sun D.W. et al. The role of miR-130a in cancer. Breast Cancer. 2017; 24(4): 521-527.

Sui H., Cai G.X., Pan S.F. et al. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer. Mol. Cancer Ther. 2014; 13(12):3137-3151.

Niehrs C., Acebron S.P. Mitotic and mitogenic Wnt signaling. The EMBO J. 2012;31(12):2705-2713.

Fan T.Y., Wang H., Xiang P. et al. Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. Int. J. Clin. Exp. Pathol. 2014; 7(10):6662-6670.

Tan J.Z., Yan Y., Wang X.X., Jiang Y., Xu H.E. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol. Sin. 2014;35(2):161–174.

Schaich M., Kestel L., Pfirrmann M. et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol. 2009; 20(1):175-181.

Hu X., Qin W., Li S. et al. Polymorphisms in DNA repair pathway genes and ABCG2 gene in advanced colorectal cancer: correlation with tumor characteristics and clinical outcome in oxaliplatin-based chemotherapy. Cancer Manag Res. 2019; 11: 285–297.

Cenciarelli C., Marei H.E.S., Zonfrillo M. et al. PDGF receptor alpha inhibition induces apoptosis in glioblastoma cancer stem cells refractory to anti-Notch and anti-EGFR treatment. Mol. Cancer. 2014; 13(1):247.

Zhang L.-H., Yin A.-A., Cheng, J.-X. et al. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene. 2015; 34(5):600-610.

Xu K., Zhang Z., Pei H. et al. FoxO3a induces temozolomide resistance in glioblastoma cells via the regulation of β-catenin nuclear accumulation. Oncol. Rep. 2017;37(4):2391-2397.

Gömöri É, Pál J, Kovács B, Dóczi T. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas. Diagn Pathol. 2012; 7: 8.

Pasqualetti F, Gonnelli A, Cantarella M. et al. Association of Glutathione S-Transferase P-1 (GSTP-1) rs1695 polymorphism with overall survival in glioblastoma patients treated with combined radio-chemotherapy. Invest New Drugs. 2018; 36(2):340-345.

da Silveira Fd CA, Lopes Bde A, da Fonseca CO. et al. Analysis of EGF+61A>G polymorphism and EGF serum levels in Brazilian glioma patients treated with perillyl alcohol-based therapy. J. Cancer Res. Clin. Oncol. 2012; 138(8):1347-1354.

Hovinga K.E., McCrea H.J., Brennan C. et al. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J. Neurooncol. 2019; 142(2): 337-345.

Hou W.G., Ai W.B., Bai X.G. et al. Genetic variation in the EGFR gene and the risk of glioma in a Chinese Han population. PLoS One. 2012;7(5): e37531.

Andersson U, Schwartzbaum J, Wiklund F. et al. A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk. Acta Oncol. 2010; 49(6):767-775.

Hsu C.Y., Ho H.L., Lin S.C. et al. The MGMT promoter single-nucleotide polymorphism rs1625649 had prognostic impact on patients with MGMT methylated glioblastoma. PLoS One. 2017;12(10): e0186430.

Кит О.И., Водолажский Д.И., Росторгуев Э.Е. и др. Молекулярно-генетические маркеры глиом. Молекулярная генетика, микробиология и вирусология. 2017;35(4):132-140.

Calvert A.E., Chalastanis A., Wu Y. et al. Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep. 2017;19(9):1858-1873.

Wang X.W., Boisselier B., Rossetto M. et al. Prognostic impact of the isocitrate dehydrogenase 1 single-nucleotide polymorphism rs11554137 in malignant gliomas. Cancer. 2013;119(4):806-813.

Mistry A.M., Vnencak-Jones C.L., Mobley B.C. Clinical prognostic value of the isocitrate dehydrogenase 1 single-nucleotide polymorphism rs11554137 in glioblastoma. J. Neurooncol. 2018;138(2): 307-313.

Shu C., Wang Q., Yan X. et al. Whole-Genome Expression Microarray Combined with Machine Learning to Identify Prognostic Biomarkers for High-Grade Glioma. J. Mol Neurosci. 2018;64 (4):491-500.

Tabouret E., Labussière M., Alentorn A. et al. LRP1B deletion is associated with poor outcome for glioblastoma patients. J. Neurol. Sci. 2015;358(1-2):440-443.

Yuan G., Gao D., Ding S. et al. DNA repair gene ERCC1 polymorphisms may contribute to the risk of glioma. Tumour Biol. 2014;35(5):4267-4275.

Bien-Möller S., Lange S., Holm T. et al. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme. Oncotarget. 2016;7(11):3031-3046.

Olivera A, Spiegel S. Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins Other Lipid Mediat. 2001;64(1-4):123-34.

Lo H.-W., Cao X., Zhu H. et al. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to iressa and alkylators. Clin. Cancer Res. 2008;14(19):6042-6054.

Zhang J.-X., Zhang J., Yan W. et al. Unique genome-wide map of TCF4 and STAT3 targets using ChIP-seq reveals their association with new molecular subtypes of glioblastoma. Neurooncol. 2013;15(3):279-289.

Hau P., Jachimczak P., Schlaier J. et al. TGF-β2 signaling in high-grade gliomas. Curr. Pharm. Biotechnol. 2011;12(12):2150-2157.

Wu Z., Wang L., Li G. et al. Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol. Cellular Biochem. 2013; 384(1-2):263-268.

Yue X., Lan F., Hu M. et al. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma. J. Neurosurg. 2016;124(1):122-128.

Melin B.S., Barnholtz-Sloan J.S., Wrensch M.R. et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. 2017; 49(5):789–794.

Kinnersley B., Houlston R S., Bondy M.L. Genome-Wide Association Studies in Glioma. Cancer Epidemiol Biomarkers Prev. 2018;27(4):418–428.

Turner K.M., Sun Y., Ji P. et al. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci USA. 2015;112(11):3421-3426.

de Castro J.V., Gonçalves C.S., Costa S et al. Impact of TGF-β1 -509C/T and 869T/C polymorphisms on glioma risk and patient prognosis. Tumour Biol. 2015;36(8):6525-6532.

Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4: 127-150.

Song D-D, Zhang Q, Li J-H et al. Single nucleotide polymorphisms rs701848 and rs2735343 in PTEN increases cancer risks in an Asian population. Oncotarget. 2017; 8(56):96290–96300.

Tamura R., Morimoto Y., Kosugi K. et al. Clinical and histopathological analyses of VEGF receptors peptide vaccine in patients with primary glioblastoma - a case series. BMC Cancer. 2020;20(1):196.

Yuan G., Yan S., Xue H. et al. JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro. PLoS One. 2015;10(3): e0118894.

Popescu A.M., Alexandru O., Brindusa C. et al. Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment. Int. J. Clin. Exp. Pathol. 2015;8(7):7825-7837.

Hochart A., Leblond P., Le Bourhis X. et al. MET receptor inhibition: Hope against resistance to targeted therapies? Bull. Cancer. 2017;104(2):157-166.

Kang W., Kim S.H., Cho H.J. et al. Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme. Oncotarget. 2015;6(29):27239-27251.

Vasconcelos VCA, Lourenço GJ, Brito ABC et al. Associations of VEGFA and KDR single-nucleotide polymorphisms and increased risk and aggressiveness of high-grade gliomas. Tumour Biol. 2019;41(9): 1010428319872092.

Grabiner BC, Nardi V, Birsoy K. et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014;4(5): 554-63.

Georgescu M-M, Li Y, Islam MZ et al. Mutations of the MAPK/TSC/mTOR pathway characterize periventricular glioblastoma with epithelioid SEGA-like morphology–morphological and therapeutic implications. Oncotarget. 2019;10(40):4038–4052.

Zeng H., Yang Z., Xu N. et al. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling. Cell Death Dis. 2017;(6): e2885.

Lin S.-P., Lee Y.-T., Wang J.-Y. et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27. PLoS One. 2012;7(11): e49605.

Giacomelli C., Natali L., Trincavelli M.L. et al. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line. Int. J. Biochem. Cell Biol. 2016;74: 95-108.

Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. 2000;25(9-10): 1439-51.

Lan J., Xue Y., Chen H. et al. Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis. FEBS Lett. 2014;588(8):3333-3339.

Tang H., Biana Y., Tu C. et al. The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Curr. Cancer Drug Targets. 2013;13(2):221-231.

Tanaka T., Sasaki A., Tanioka D. et al. Analysis of p53 and miRNA expressions after irradiation in glioblastoma cell lines. J. Showa Med. Assoc. 2012;72(2): 238-244.

Zhang Y, Dube C, Gibert M Jr. et al. The p53 Pathway in Glioblastoma. Cancers (Basel). 2018;10(9): pii E297.

Anselmo NP, Rey JA, Almeida LO et al. Concurrent sequence variation of TP53 and TP73 genes in anaplastic astrocytoma. Genet Mol. Res. 2009;8(4):1257-1263.

Wang J., Wang M.L., Wang C.H. et al. A novel functional polymorphism of GFAP decrease glioblastoma susceptibility through inhibiting the binding of miR-139. Aging (Albany NY). 2018;10(5): 988-999.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

Copyright (c) 2021 Александр Чернов, Ирина Балдуева, Татьяна Нехаева, Эльвира Галимова, Диана Алавердян, Ольга Шамова