Молекулярные механизмы множественной лекарственной устойчивости глиобластом человека
pdf

Ключевые слова

обзор
глиобластома
множественная лекарственная устойчивость
химиотерапия
факторы роста
микроРНК
онкогены

Как цитировать

Чернов, А., Балдуева, И., Нехаева, Т., Галимова, Э., Алавердян, Д., & Шамова, О. (2022). Молекулярные механизмы множественной лекарственной устойчивости глиобластом человека. Вопросы онкологии, 67(1), 20–28. https://doi.org/10.37469/0507-3758-2021-67-1-20-28

Аннотация

В обзоре обсуждается феномен множественной лекарственной устойчивости (МЛУ) глиобластом (ГБ) в контексте экспрессии белков-переносчиков семейства ABC и процессов пролиферации, ангиогенеза, рецидивирования и гибели. Акцент делается на выявлении молекулярных мишеней среди факторов роста, рецепторов, белков сигнальной трансдукции, микроРНК, факторов транскрипции, протоонкогенов, генов-супрессоров опухолей и их полиморфных вариантов (SNP) для разработки и создания целевых противоопухолевых препаратов.

https://doi.org/10.37469/0507-3758-2021-67-1-20-28
pdf

Библиографические ссылки

Laws E.R., Parney I.F., Huang W. et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J. Neurosurg. 2003; 99: 467–73.

Scoccianti S., Krengli M., Marrazzo L. et al. Hypofractionated radiotherapy with simultaneous integrated boost (SIB) plus temozolomide in good prognosis patients with glioblastoma: a multicenter phase II study by the Brain Study Group of the Italian Association of Radiation Oncology (AIRO). Radiol. Med. 2018;123(1): 48‒62.

Kaka N., Hafazalla K., Samawi H. et al. Progression-Free but No Overall Survival Benefit for Adult Patients with Bevacizumab Therapy for the Treatment of Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis. Cancers (Basel). 2019; 11(11):1723.

deSouza R.M., Shaweis H., Han C. et al. Has the survival of patients with glioblastoma changed over the years? Br. J Cancer. 2016; 114(2):146-150.

Cunha ML.V.D., Maldaun M.V.C. Metastasis from glioblastoma multiforme: a meta-analysis. Rev Assoc. Med. Bras. 2019; 65(3):424-433.

Maraka S., Janku F. BRAF alterations in primary brain tumors. Discov Med. 2018;26(141):51‒60.

George A.M. ABC Transporters - 40 Years on. Springer, 2015: 376.

Zhou S.-F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008; 38(7-8):802‒832.

Wang D., Wang C., Wang L. et al. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv. 2019; 26(1):551-565.

Coyle B., Kessler M., Sabnis D.H., Kerr I.D. ABCB1 in children's brain tumours. Biochem Soc. Trans. 2015; 43(5):1018-22.

Yang J.M., Vassil A.D., Hait W.N. Activation of phospholipase C induces the expression of the multidrug resistance (MDR1) gene through the Raf-MAPK pathway. Mol. Pharmacol. 2001; 60(4):674-680.

Bark H., Choi C.H. PSC833, cyclosporine analogue, downregulates MDR1 expression by activating JNK/c-Jun/AP-1 and suppressing NF-kappaB. Cancer Chemother. Pharmacol. 2010; 65(6):1131-1136.

Hui RC., Francis R.E., Guest S.K. et al. Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol. Cancer Ther. 2008; 7(3):670-678.

Iorio A.L., da Ros M., Fantappiè O. et al. Blood-brain barrier and breast cancer resistance protein: A limit to the therapy of cns tumors and neurodegenerative diseases. Anticancer Agents Medi. Chem. 2016; 16(7):810-815.

de Gooijer M.C., Zhang P., Weijer R., Buil LCM., Beijnen J.H., van Tellingen. The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int. J. Cancer. 2018; 142(2):381-391.

Bhuvanalakshmi G., Arfuso F., Millward M., Dharmarajan A., Warrier S. Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties. PLoS One. 2015; 10(6): e0127517.

Harding H.P., Zhang Y., Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999; 397: 271–274.

Zhang H.D., Jiang L.H., Sun D.W. et al. The role of miR-130a in cancer. Breast Cancer. 2017; 24(4): 521-527.

Sui H., Cai G.X., Pan S.F. et al. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer. Mol. Cancer Ther. 2014; 13(12):3137-3151.

Niehrs C., Acebron S.P. Mitotic and mitogenic Wnt signaling. The EMBO J. 2012;31(12):2705-2713.

Fan T.Y., Wang H., Xiang P. et al. Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. Int. J. Clin. Exp. Pathol. 2014; 7(10):6662-6670.

Tan J.Z., Yan Y., Wang X.X., Jiang Y., Xu H.E. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol. Sin. 2014;35(2):161–174.

Schaich M., Kestel L., Pfirrmann M. et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol. 2009; 20(1):175-181.

Hu X., Qin W., Li S. et al. Polymorphisms in DNA repair pathway genes and ABCG2 gene in advanced colorectal cancer: correlation with tumor characteristics and clinical outcome in oxaliplatin-based chemotherapy. Cancer Manag Res. 2019; 11: 285–297.

Cenciarelli C., Marei H.E.S., Zonfrillo M. et al. PDGF receptor alpha inhibition induces apoptosis in glioblastoma cancer stem cells refractory to anti-Notch and anti-EGFR treatment. Mol. Cancer. 2014; 13(1):247.

Zhang L.-H., Yin A.-A., Cheng, J.-X. et al. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene. 2015; 34(5):600-610.

Xu K., Zhang Z., Pei H. et al. FoxO3a induces temozolomide resistance in glioblastoma cells via the regulation of β-catenin nuclear accumulation. Oncol. Rep. 2017;37(4):2391-2397.

Gömöri É, Pál J, Kovács B, Dóczi T. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas. Diagn Pathol. 2012; 7: 8.

Pasqualetti F, Gonnelli A, Cantarella M. et al. Association of Glutathione S-Transferase P-1 (GSTP-1) rs1695 polymorphism with overall survival in glioblastoma patients treated with combined radio-chemotherapy. Invest New Drugs. 2018; 36(2):340-345.

da Silveira Fd CA, Lopes Bde A, da Fonseca CO. et al. Analysis of EGF+61A>G polymorphism and EGF serum levels in Brazilian glioma patients treated with perillyl alcohol-based therapy. J. Cancer Res. Clin. Oncol. 2012; 138(8):1347-1354.

Hovinga K.E., McCrea H.J., Brennan C. et al. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J. Neurooncol. 2019; 142(2): 337-345.

Hou W.G., Ai W.B., Bai X.G. et al. Genetic variation in the EGFR gene and the risk of glioma in a Chinese Han population. PLoS One. 2012;7(5): e37531.

Andersson U, Schwartzbaum J, Wiklund F. et al. A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk. Acta Oncol. 2010; 49(6):767-775.

Hsu C.Y., Ho H.L., Lin S.C. et al. The MGMT promoter single-nucleotide polymorphism rs1625649 had prognostic impact on patients with MGMT methylated glioblastoma. PLoS One. 2017;12(10): e0186430.

Кит О.И., Водолажский Д.И., Росторгуев Э.Е. и др. Молекулярно-генетические маркеры глиом. Молекулярная генетика, микробиология и вирусология. 2017;35(4):132-140.

Calvert A.E., Chalastanis A., Wu Y. et al. Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep. 2017;19(9):1858-1873.

Wang X.W., Boisselier B., Rossetto M. et al. Prognostic impact of the isocitrate dehydrogenase 1 single-nucleotide polymorphism rs11554137 in malignant gliomas. Cancer. 2013;119(4):806-813.

Mistry A.M., Vnencak-Jones C.L., Mobley B.C. Clinical prognostic value of the isocitrate dehydrogenase 1 single-nucleotide polymorphism rs11554137 in glioblastoma. J. Neurooncol. 2018;138(2): 307-313.

Shu C., Wang Q., Yan X. et al. Whole-Genome Expression Microarray Combined with Machine Learning to Identify Prognostic Biomarkers for High-Grade Glioma. J. Mol Neurosci. 2018;64 (4):491-500.

Tabouret E., Labussière M., Alentorn A. et al. LRP1B deletion is associated with poor outcome for glioblastoma patients. J. Neurol. Sci. 2015;358(1-2):440-443.

Yuan G., Gao D., Ding S. et al. DNA repair gene ERCC1 polymorphisms may contribute to the risk of glioma. Tumour Biol. 2014;35(5):4267-4275.

Bien-Möller S., Lange S., Holm T. et al. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme. Oncotarget. 2016;7(11):3031-3046.

Olivera A, Spiegel S. Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins Other Lipid Mediat. 2001;64(1-4):123-34.

Lo H.-W., Cao X., Zhu H. et al. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to iressa and alkylators. Clin. Cancer Res. 2008;14(19):6042-6054.

Zhang J.-X., Zhang J., Yan W. et al. Unique genome-wide map of TCF4 and STAT3 targets using ChIP-seq reveals their association with new molecular subtypes of glioblastoma. Neurooncol. 2013;15(3):279-289.

Hau P., Jachimczak P., Schlaier J. et al. TGF-β2 signaling in high-grade gliomas. Curr. Pharm. Biotechnol. 2011;12(12):2150-2157.

Wu Z., Wang L., Li G. et al. Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol. Cellular Biochem. 2013; 384(1-2):263-268.

Yue X., Lan F., Hu M. et al. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma. J. Neurosurg. 2016;124(1):122-128.

Melin B.S., Barnholtz-Sloan J.S., Wrensch M.R. et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. 2017; 49(5):789–794.

Kinnersley B., Houlston R S., Bondy M.L. Genome-Wide Association Studies in Glioma. Cancer Epidemiol Biomarkers Prev. 2018;27(4):418–428.

Turner K.M., Sun Y., Ji P. et al. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci USA. 2015;112(11):3421-3426.

de Castro J.V., Gonçalves C.S., Costa S et al. Impact of TGF-β1 -509C/T and 869T/C polymorphisms on glioma risk and patient prognosis. Tumour Biol. 2015;36(8):6525-6532.

Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4: 127-150.

Song D-D, Zhang Q, Li J-H et al. Single nucleotide polymorphisms rs701848 and rs2735343 in PTEN increases cancer risks in an Asian population. Oncotarget. 2017; 8(56):96290–96300.

Tamura R., Morimoto Y., Kosugi K. et al. Clinical and histopathological analyses of VEGF receptors peptide vaccine in patients with primary glioblastoma - a case series. BMC Cancer. 2020;20(1):196.

Yuan G., Yan S., Xue H. et al. JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro. PLoS One. 2015;10(3): e0118894.

Popescu A.M., Alexandru O., Brindusa C. et al. Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment. Int. J. Clin. Exp. Pathol. 2015;8(7):7825-7837.

Hochart A., Leblond P., Le Bourhis X. et al. MET receptor inhibition: Hope against resistance to targeted therapies? Bull. Cancer. 2017;104(2):157-166.

Kang W., Kim S.H., Cho H.J. et al. Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme. Oncotarget. 2015;6(29):27239-27251.

Vasconcelos VCA, Lourenço GJ, Brito ABC et al. Associations of VEGFA and KDR single-nucleotide polymorphisms and increased risk and aggressiveness of high-grade gliomas. Tumour Biol. 2019;41(9): 1010428319872092.

Grabiner BC, Nardi V, Birsoy K. et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014;4(5): 554-63.

Georgescu M-M, Li Y, Islam MZ et al. Mutations of the MAPK/TSC/mTOR pathway characterize periventricular glioblastoma with epithelioid SEGA-like morphology–morphological and therapeutic implications. Oncotarget. 2019;10(40):4038–4052.

Zeng H., Yang Z., Xu N. et al. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling. Cell Death Dis. 2017;(6): e2885.

Lin S.-P., Lee Y.-T., Wang J.-Y. et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27. PLoS One. 2012;7(11): e49605.

Giacomelli C., Natali L., Trincavelli M.L. et al. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line. Int. J. Biochem. Cell Biol. 2016;74: 95-108.

Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. 2000;25(9-10): 1439-51.

Lan J., Xue Y., Chen H. et al. Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis. FEBS Lett. 2014;588(8):3333-3339.

Tang H., Biana Y., Tu C. et al. The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Curr. Cancer Drug Targets. 2013;13(2):221-231.

Tanaka T., Sasaki A., Tanioka D. et al. Analysis of p53 and miRNA expressions after irradiation in glioblastoma cell lines. J. Showa Med. Assoc. 2012;72(2): 238-244.

Zhang Y, Dube C, Gibert M Jr. et al. The p53 Pathway in Glioblastoma. Cancers (Basel). 2018;10(9): pii E297.

Anselmo NP, Rey JA, Almeida LO et al. Concurrent sequence variation of TP53 and TP73 genes in anaplastic astrocytoma. Genet Mol. Res. 2009;8(4):1257-1263.

Wang J., Wang M.L., Wang C.H. et al. A novel functional polymorphism of GFAP decrease glioblastoma susceptibility through inhibiting the binding of miR-139. Aging (Albany NY). 2018;10(5): 988-999.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2021