Жидкостная биопсия как универсальный метод ранней ДНК-диагностики онкологических заболеваний: проблемы, подходы, решения.
Загрузок: 17
Просмотров: 319
pdf

Ключевые слова

жидкостная биопсия
рак
цоДНК
секвенирование нового поколения
молекулярные маркеры
ранняя диагностика

Как цитировать

Янус, Г. ., Лайдус, Т. ., Мартьянов, А. ., Алексахина, С., Кулигина, Е. ., & Имянитов, Е. . (2021). Жидкостная биопсия как универсальный метод ранней ДНК-диагностики онкологических заболеваний: проблемы, подходы, решения. Вопросы онкологии, 67(5), 593–599. https://doi.org/10.37469/0507-3758-2021-67-5-593-599

Аннотация

До недавних пор создание универсального теста, который позволил бы по анализу крови, мочи или иной биологической жидкости выявить любое злокачественное новообразование на ранней стадии,  представлялось задачей наподобие разработки «вечного двигателя». На этом пути лежат многочисленные препятствия, и прежде всего – сверхмалые концентрации тех потенциальных маркеров, которые клетки подобных опухолей высвобождают в кровь. Между тем, попытки создания такого теста оказались мощным двигателем прогресса методологии высокоточного ДНК-анализа, а за последние несколько лет на этом поле были достигнуты ошеломляющие практические успехи. Такие разработки, как тест CancerSEEK, уже достигли пороговых показателей, допускающих клиническое использование. Быстро развиваются методики, основанные на поиске различий в паттернах метилирования (тест Galleri, cfMeDIP-seq). Ряд исследований основан на весьма неожиданных подходах, например анализе циркулирующих в плазме опухоль-ассоциированных вирусных или микробных последовательностей ДНК.  Помимо попыток создания универсальных тестов, выявляющих любые или многочисленные разновидности неоплазм у лиц старшего возраста, развитие получили методы ранней ДНК-диагностики опухолей конкретных локализаций в прочих категориях высокого онкологического риска.  В свете этих достижений перспективы внедрения жидкостной биопсии в число рутинных диспансерных методов обследования уже не выглядят делом далекого будущего. 

https://doi.org/10.37469/0507-3758-2021-67-5-593-599
Загрузок: 17
Просмотров: 319
pdf

Библиографические ссылки

Garg N, Hidalgo LG, Aziz F et al. Use of Donor-Derived Cell-Free DNA for Assessment of Allograft Injury in Kidney Transplant Recipients During the Time of the Coronavirus Disease 2019 Pandemic // Transplant Proc. 2020;52:2592–2595.

Fan HC, Blumenfeld YJ, Chitkara U et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood // Proc Natl Acad Sci USA. 2008;105:16266–16271.

van 't Erve I, Greuter MJE, Bolhuis K et al. Diagnostic Strategies toward Clinical Implementation of Liquid Biopsy RAS/BRAF Circulating Tumor DNA Analyses in Patients with Metastatic Colorectal Cancer // J Mol Diagn. 2020;22:1430–1437.

Turner NC, Kingston B, Kilburn LS et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial // Lancet Oncol. 2020;21:1296–1308.

Moati E, Blons H, Taly V et al. Plasma clearance of RAS mutation under therapeutic pressure is a rare event in metastatic colorectal cancer // Int J Cancer. 2020;147:1185–1189.

Hall CS, Karhade MG, Bowman Bauldry JB et al. Prognostic Value of Circulating Tumor Cells Identified Before Surgical Resection in Nonmetastatic Breast Cancer Patients // J Am Coll Surg. 2016;223:20–29.

Naidoo M, Gibbs P, Tie J. ctDNA and Adjuvant Therapy for Colorectal Cancer: Time to Re-Invent Our Treatment Paradigm // Cancers (Basel). 2021;13:346.

Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application // Cancer Discov. 2021;11:858–873.

Diamandis EP, Fiala C. Can circulating tumor DNA be used for direct and early stage cancer detection? // F1000Res. 2017;6:2129.

Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements // Crit Rev Clin Lab Sci. 2020;57:484–507.

Yao W, Mei C, Nan X, Hui L. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study // Gene. 2016;590:142–148.

Zill OA, Banks KC, Fairclough SR et al. The Landscape of Actionable Genomic Alterations in Cell-Free Circulating Tumor DNA from 21,807 Advanced Cancer Patients // Clin Cancer Res. 2018;24:3528–3538.

Lam VK, Zhang J, Wu CC et al. Genotype-Specific Differences in Circulating Tumor DNA Levels in Advanced NSCLC // J Thorac Oncol. 2021;16:601–609.

Ho AS, Daskivich TJ, Sacks WL, Zumsteg ZS. Parallels Between Low-Risk Prostate Cancer and Thyroid Cancer: A Review // JAMA Oncol. 2019;5:556–564.

Clarke CA, Hubbell E, Kurian AW et al. Projected Reductions in Absolute Cancer-Related Deaths from Diagnosing Cancers Before Metastasis, 2006–2015 // Cancer Epidemiol Biomarkers Prev. 2020;29:895–902.

Newman AM, Bratman SV, To J et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage // Nat Med. 2014;20:548–554.

Schmitt MW, Kennedy SR, Salk JJ et al. Detection of ultra-rare mutations by next-generation sequencing // Proc Natl Acad Sci USA. 2012;109:14508–14513.

Shiroguchi K, Jia TZ, Sims PA, Xie XS. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes // Proc Natl Acad Sci USA. 2012;109:1347–1352.

Newman AM, Lovejoy AF, Klass DM et al. Integrated digital error suppression for improved detection of circulating tumor DNA // Nat Biotechnol. 2016;34:547–555.

Phallen J, Sausen M, Adleff V et al. Direct detection of early-stage cancers using circulating tumor DNA // Sci Transl Med. 2017;9:eaan2415.

Razavi P, Li BT, Brown DN et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants // Nat Med. 2019;25:1928–1937.

Cohen JD, Li L, Wang Y et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test // Science. 2018;359:926–930.

Lennon AM, Buchanan AH, Kinde I et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention // Science. 2020;369:eabb9601.

Douville C, Cohen JD, Ptak J et al. Assessing aneuploidy with repetitive element sequencing // Proc Natl Acad Sci USA. 2020;117:4858–4863.

Liu X, Lang J, Li S et al. Fragment Enrichment of Circulating Tumor DNA With Low-Frequency Mutations // Front Genet. 2020;11:147.

Taylor WC. Comment on 'Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA' by MC. Liu et al. // Ann Oncol. 2020;31:1266–1267.

Hubbell E, Clarke CA, Aravanis AM, Berg CD. Modeled Reductions in Late-stage Cancer with a Multi-Cancer Early Detection Test // Cancer Epidemiol Biomarkers Prev. 2021;30:460–468.

Chen X, Gole J, Gore A et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test // Nat Commun. 2020;11:3475.

Papageorgiou EA, Karagrigoriou A, Tsaliki E et al. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21 // Nat Med. 2011;17:510–513.

Nassiri F, Chakravarthy A, Feng S et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes // Nat Med. 2020;26:1044–1047.

Mouliere F, Chandrananda D, Piskorz AM et al. Enhanced detection of circulating tumor DNA by fragment size analysis // Sci Transl Med. 2018;10:eaat4921.

Xu L, Shen L, Polski A et al. Simultaneous identification of clinically relevant RB1 mutations and copy number alterations in aqueous humor of retinoblastoma eyes // Ophthalmic Genet. 2020;41:526–532.

Earl J, Barreto E, Castillo ME et al. Somatic Mutation Profiling in the Liquid Biopsy and Clinical Analysis of Hereditary and Familial Pancreatic Cancer Cases Reveals KRAS Negativity and a Longer Overall Survival // Cancers (Basel). 2021;13:1612.

Gilson P, Merlin JL, Harlé A. Detection of Microsatellite Instability: State of the Art and Future Applications in Circulating Tumour DNA (ctDNA) // Cancers (Basel). 2021;13:1491.

Liang W, Liu D, Li M et al. Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases // Transl Lung Cancer Res. 2020;9:2016–2026.

Kinugasa H, Hiraoka S, Nouso K et al. Liquid biopsy for patients with IBD-associated neoplasia // BMC Cancer. 2020;20:1188.

Chan KCA, Woo JKS, King A et al. Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer // N Engl J Med. 2017;377:513–522.

Lam WKJ, Jiang P, Chan KCA et al. Methylation analysis of plasma DNA informs etiologies of Epstein-Barr virus-associated diseases // Nat Commun. 2019;10:3256.

Poore GD, Kopylova E, Zhu Q et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach // Nature. 2020;579:567–574.

Galanzha EI, Menyaev YA, Yadem AC et al. In vivo liquid biopsy using Cytophone platform for photoacoustic detection of circulating tumor cells in patients with melanoma // Sci Transl Med. 2019;11:eaat5857.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2021