Оценка роли мутации EGFR при определении тактики хирургического лечения немелкоклеточного рака легкого
Загрузок: 11
Просмотров: 197
pdf

Ключевые слова

ИТК EGFR
EGFR мутация
цоДНК
хирургическое лечение
таргетная терапия
резистентность
рак легкого
НМРЛ

Как цитировать

Слугин, Е., Левченко, Е., Имянитов, Е., & Лопушанская, О. (2021). Оценка роли мутации EGFR при определении тактики хирургического лечения немелкоклеточного рака легкого. Вопросы онкологии, 67(3), 315–322. https://doi.org/10.37469/0507-3758-2021-67-3-315-322

Аннотация

Рак легкого — наиболее часто диагностируемое злокачественное новообразование во всем мире, и в настоящее время уровень смертности от него остается одним из самых высоких. Обнаружение и активное использование EGFR мутации в клиническую практику позволило рассматривать ее в качестве одного из перспективных прогностических факторов. Как уже известно, на протяжении последнего десятилетия мутации гена EGFR являются предиктивным фактором при назначении ингибиторов тирозинкиназы (ИТК EGFR) у пациентов с распространенным немелкоклеточным раком легкого (НМРЛ). Одним из малоизученных вопросов является оценка роли данной мутации в качестве прогностического фактора для пациентов, перенесших хирургическое лечение, в ответ на развитие резистентности, которая развивается при приеме ИТК EGFR. В данном обзоре литературы затронуты ключевые аспекты роли мутации EGFR в качестве фактора, который может влиять на тактику лечения и использования хирургического метода.

https://doi.org/10.37469/0507-3758-2021-67-3-315-322
Загрузок: 11
Просмотров: 197
pdf

Библиографические ссылки

World Health Organization. International agency for research on cancer. https: // doi: gco.iarc.fr/today/fact-sheets-cancers

Kaprin AD, Starinskiy VV, Petrova GV. The status of cancer care for the population of Russia in 2018. Moskow: MNIOI them. P.A. Herzen — branch of the FSBI «NMITs of Radiology» of the Ministry of Health of Russia, 2019.

Blackhall F, Frese KK, Simpson K et al. Will liquid biopsies improve outcomes for patients with small-cell lung cancer? // Lancet Oncol. 2018;19(9):470–481. https: // doi: 10.1016/S1470-2045(18)30455-8

Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma // N Engl J Med. 2009;361(10):947–57. https: // doi: 10.1056/NEJMoa0810699

Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer // N Engl J Med. 2010;363(18):1693–703. https: // doi: 10.1056/NEJMoa1006448

Fukuoka M, Yano S, Giaccone G et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) // J Clin Oncol. 2003;21(12):2237–2246. https: // doi: 10.1200/JCO.2003.10.038

Kris MG, Natale RB, Herbst RS et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial // JAMA. 2003;290(16):2149–2158. https: // doi: 10.1001/jama.290.16.2149

Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib // N Engl J Med. 2004;350(21):2129–2139. https: // doi: 10.1056/NEJMoa040938

Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy // Science. 2004;304(5676):1497–1500. https: // doi: 10.1126/science.1099314

Imyanitov EN, Demidova IA, Gordiev MG et al. Distribution of EGFR Mutations in 10,607 Russian Patients with Lung Cancer // Mol Diagn Ther. 2016;20(4):401–406. https: // doi: 10.1007/s40291-016-0213-4

Eberhard DA, Giaccone G, Johnson BE et al. Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting // J Clin Oncol. 2008;26(6):983–994. https: // doi: 10.1200/JCO.2007.12.9858

Pao W, Ladanyi M. Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method // Clin Cancer Res. 2007;13(17):4954–4955. https: // doi: 10.1158/1078-0432.CCR-07-1387

Willmore-Payne C, Holden JA, Layfield LJ. Detection of epidermal growth factor receptor and human epidermal growth factor receptor 2 activating mutations in lung adenocarcinoma by high-resolution melting amplicon analysis: correlation with gene copy number, protein expression, and hormone receptor expression // Hum Pathol. 2006;37(6):755–763. https: // doi: 10.1016/j.humpath.2006.02.004

Nomoto K, Tsuta K, Takano T et al. Detection of EGFR mutations in archived cytologic specimens of nonsmall cell lung cancer using high-resolution melting analysis // Am J Clin Pathol. 2006;126(4):608–615. https: // doi: 10.1309/N5PQNGW2QKMX09X7

Fukui T, Ohe Y, Tsuta K et al. Prospective study of the accuracy of EGFR mutational analysis by high-resolution melting analysis in small samples obtained from patients with nonsmall cell lung cancer // Clin Cancer Res. 2008;14(15):4751–4757. https: // doi: 10.1158/1078-0432.CCR-07-5207

Janne PA, Borras AM, Kuang Y et al. A rapid and sensitive enzymatic method for epidermal growth factor receptor mutation screening // Clin Cancer Res. 2006;12(3 Pt 1):751–758. https: // doi: 10.1158/1078-0432.CCR-05-2047

Nagai Y, Miyazawa H, Tanaka T et al. Genetic heterogeneity of the epidermal growth factor receptor in nonsmall cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid–locked nucleic acid PCR clamp // Cancer Res. 2005;65(16):7276–7282. https: // doi: 10.1158/0008-5472.CAN-05-0331

Li J, Wang L, Mamon H et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing // Nat Med. 2008;14(5):579–584. https: // doi: 10.1038/nm1708

Yoshimasu T, Maebeya S, Suzuma T et al. Disappearance curves for tumor markers after resection of intrathoracic malignancies // Biol Markers. 1999 Apr-Jun;14(2):99–105.

Fournie GJ, Courtin JP, Laval F et al. Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours // Cancer Lett. 1995;91(2):221–227. https: // doi: 10.1016/0304-3835(95)03742-f

Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells // Cancer Res. 2001;61(4):1659–1665.

Stroun M, Lyautey J, Lederrey C et al. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release // Clin Chim Acta. 2001;313(1–2):139–142. https: // doi: 10.1016/s0009-8981(01)00665-9

Fan HC, Blumenfeld YJ, Chitkara U et al. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing // Clin Chem. 2010;56(8):1279–1286. https: // doi: 10.1373/clinchem.2010.144188

Bronkhorst AJ, Wentzel JF, Aucamp J et al. Characterization of the cell-free DNA released by cultured cancer cells // Biochim Biophys Acta. 2016;1863(1):157–165. https: // doi: 10.1016/j.bbamcr.2015.10.022

Lebofsky R, Decraene C, Bernard V et al. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types // Mol Oncol. 2015;9(4):783–790. https: // doi: 10.1016/j.molonc.2014.12.003

Szpechcinski A, Chorostowska-Wynimko J, Struniawski R et al. Cell-free DNA levels in plasma of patients with non-small-cell lung cancer and inflammatory lung disease // Br J Cancer. 2015;113(3):476–483. https: // doi: 10.1038/bjc.2015.225

Tissot C, Toffart AC, Villar S et al. Circulating free DNA concentration is an independent prognostic biomarker in lung cancer // Eur Respir J. 2015;46(6):1773–1780. https: // doi: 10.1183/13993003.00676-2015

Li BT, Drilon A, Johnson ML et al. A prospective study of total plasma cell-free DNA as a predictive biomarker for response to systemic therapy in patients with advanced non-small-cell lung cancers // Ann Oncol. 2016;27(1):154–159. https: // doi: 10.1093/annonc/mdv498

Del Re M, Tiseo M, Bordi P et al. Contribution of KRAS mutations and c. 2369C>T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA // Oncotarget. 2017;8(8):13611–13619. https: // doi: 10.18632/oncotarget.6957

Hu W, Yang Y, Zhang L et al. Post surgery circulating free tumor DNA is a predictive biomarker for relapse of lung cancer // Cancer Med. 2017;6(5):962–974. https: // doi: 10.1002/cam4.980

Chen K, Zhang J, Guan T et al. Comparison of plasma to tissue DNA mutations in surgical patients with non–small cell lung cancer // J Thorac Cardiovasc Surg. 2017;154(3):1123–1131. https: // doi: 10.1016/j.jtcvs.2017.04.073

Tsao MS, Sakurada A, Cutz J et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome // N Engl J Med. 2005;353(2):133–44. https: // doi: 10.1056/NEJMoa050736

Eberhard DA, Johnson BE, Amler LC et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib // J Clin Oncol. 2005;23(25):5900–5909. https: // doi: 10.1200/JCO.2005.02.857

Arcila ME, Nafa K, Chaft JE et al. EGFR Exon 20 Insertion Mutations in Lung Adenocarcinomas: Prevalence, Molecular Heterogeneity, and Clinicopathologic Characteristics // Mol Cancer Ther. 2013;12(2):220–229. https: // doi: 10.1158/1535-7163.MCT-12-0620

Sharma N, Graziano S. Overview of the LUX-Lung clinical trial program of afatinib for non-small cell lung cancer // Cancer Treat Rev. 2018;69:143–151. https: // doi: 10.1016/j.ctrv.2018.06.018

Lee Y, Kim TM, Kim DW et al. Preclinical modeling of osimertinib for NSCLC with EGFR Exon 20 insertion mutations // J Thorac Oncol. 2019;14(9):1556–1566. https: // doi: 10.1016/j.jtho.2019.05.006

Sasaki H, Shimizu S, Endo K et al. EGFR and erbB2 mutation status in Japanese lung cancer patients // Int J Cancer. 2006;118(1):180–184. https: // doi: 10.1002/ijc.21301

Kobayashi N, Toyooka S, Ichimura K et al. Non-BAC component but not epidermal growth factor receptor gene mutation is associated with poor outcomes in small adenocarcinoma of the lung // J Thorac Oncol. 2008;3(7):704–710. https: // doi: 10.1097/JTO.0b013e31817c6080

Nose N, Sugio K, Oyama T et al. Association between estrogen receptor-beta expression and epidermal growth factor receptor mutation in the postoperative prognosis of adenocarcinoma of the lung // J Clin Oncol. 2009;27(3):411–417. https: // doi: 10.1200/JCO.2008.18.3251

Kosaka T, Yatabe Y, Onozato R et al. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma // J Thorac Oncol. 2009;4(1):22–29. https: // doi: 10.1097/JTO.0b013e3181914111

Lee YJ, Park I.K, Park MS et al. Activating mutations within the EGFR kinase domain: a molecular predictor of disease-free survival in resected pulmonary adenocarcinoma // J Cancer Res Clin Oncol. 2009;135(12):1647–1654. https: // doi: 10.1007/s00432-009-0611-7

Matsumura Y, Owada Y, Yamaura T et al. Epidermal growth factor receptor gene mutation as risk factor for recurrence in patients with surgically resected lung adenocarcinoma: a matched-pair analysis // Interact Cardiovasc Thorac Surg. 2016;23(2):216–222. https: // doi: 10.1093/icvts/ivw116

D'Angelo SP, Janjigian YY, Ahye N et al. Distinct Clinical Course of EGFR-Mutant Resected Lung Cancers: Results of Testing of 1118 Surgical Specimens and Effects of Adjuvant Gefitinib and Erlotinib // J Thorac Oncol. 2012;7(12):1815–1822. https: // doi: 10.1097/JTO.0b013e31826bb7b2

Yotsukura M, Yasuda H, Shigenobu T et al. Clinical and pathological characteristics of EGFR mutation in operable early stage lung adenocarcinoma // Lung Cancer. 2017;109:45–51. https: // doi: 10.1016/j.lungcan.2017.04.014

Jao K, Tomasini P, Kamel-Reid S et al. The prognostic effect of single and multiple cancer-related somatic mutations in resected non-small-cell lung cancer // Lung Cancer. 2018;123:22–29. https: // doi: 10.1016/j.lungcan.2018.06.023

Ito M, Miyata Y, Kushitani K et al. Increased risk of recurrence in resected EGFR-positive pN0M0 invasive lung adenocarcinoma // Thorac Cancer. 2018;9(12):1594–1602. https: // doi: 10.1111/1759-7714.12866

Sakanoue I, Hamakawa H, Kaji R et al. Sleeve lobectomy for lung adenocarcinoma treated with neoadjuvant afatinib // J Thorac Dis. 2018;10(3):170–174. https: // doi: 10.21037/jtd.2018.02.03

Hishida T, Yoshida J, Aokage K et al. Long-term outcome of surgical resection for residual or regrown advanced non-small cell lung carcinomas following EGFR-TKI treatment: report of four cases // Gen Thorac Cardiovasc Surg. 2016;64(7):429–433. https: // doi: 10.1007/s11748-014-0508-5

Takamochi K, Suzuki K, Sugimura H et al. Surgical resection after gefitinib treatment in patients with lung adenocarcinoma harboring epidermal growth factor receptor gene mutation // Lung Cancer. 2007;58(1):149–155. https: // doi: 10.1016/j.lungcan.2007.04.016

Kappers I, Klomp HM, Burgers JA et al. Neoadjuvant (induction) erlotinib response in stageIIIA non-small-cell lung cancer // J Clin Oncol. 2008;26(25):4205–4207. https: // doi: 10.1200/JCO.2008.16.3709

Levchenko EV, Moiseyenko VM, Matsko DE et al. Down-staging of EGFR mutation-positive advanced lung carcinoma with gefitinib followed by surgical intervention: follow-up of two cases // Onkologie. 2009;32(11):674–677. https: // doi: 10.1159/000242220

Hishida T, Nagai K, Mitsudomi T et al. Salvage surgery for advanced non-small cell lung cancer after response to gefitinib // J Thorac Cardiovasc Surg. 2010;140(5):69–71. https: // doi: 10.1016/j.jtcvs.2010.06.035

Shen H, Zhong X, Ge X.Q et al. Surgical resection of lung adenocarcinoma without EGFR mutation after neoadjuvant gefitinib treatment // Clin Respir J. 2010;4(3):192–193. https: // doi: 10.1111/j.1752-699X.2009.00167.x

Liu M, Jiang G, He W et al. Surgical resection of locally advanced pulmonary adenocarcinoma after gefitinib therapy // Ann Thorac Surg. 2011;92(1):11–12. https: // doi: 10.1016/j.athoracsur.2011.02.021

Ong M, Kwan K, Kamel-Reid S et al. Neoadjuvant erlotinib and surgical resection of a stage iiia papillary adenocarcinoma of the lung with an L861Q activating EGFR mutation // Curr Oncol. 2012;19(3):222–226. https: // doi: 10.3747/co.19.908

Hashimoto K, Horinouchi H, Ohtsuka T et al. Salvage surgery for a super-responder by gefitinib therapy for advanced lung cancer // Gen Thorac Cardiovasc Surg. 2012;60(12):851–854. https: // doi: 10.1007/s11748-012-0087-2

Marech I, Vacca A, Gnoni A et al. Surgical resection of locally advanced epidermal growth factor receptor (EGFR) mutated lung adenocarcinoma after gefitinib and review of the literature // Tumori. 2013;99(5):241–244. https: // doi: 10.1700/1377.15324

Funakoshi Y, Takeuchi Y, Maeda H. Pneumonectomy after response to gefitinib treatment for lung adenocarcinoma // Asian Cardiovasc Thorac Ann. 2013;21(4):482–484. https: // doi: 10.1177/0218492312462834

López-González A, Almagro E, Salas C et al. Use of a tyrosine kinase inhibitor as neoadjuvant therapy for non-small cell lung cancer: a case report // Respir Med Case Rep. 2013;9:8–10. https: // doi: 10.1016/j.rmcr.2013.02.002

Yamamoto Y, Kodama K, Maniwa T et al. Surgical resection of advanced non-small cell lung cancer after a response to EGFR TKI: presentation of two cases and a literature review // J Cardiothorac Surg. 2017 Nov 23;12(1):98. https: // doi: 10.1186/s13019-017-0668-3

Yu HA, Sima CS, Huang J et al. Local therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors // J Thorac Oncol. 2013;8(3):346–351. https: // doi: 10.1097/JTO.0b013e31827e1f83

Gomez DR, Blumenschein GRJr, Lee JJ et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study // Lancet Oncol. 2016;17(12):1672–1682. https: // doi: 10.1016/S1470-2045(16)30532-0

Westover D, Zugazagoitia J, Cho BC et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors // Ann Oncol. 2018;29(suppl_1):10–19. https: // doi: 10.1093/annonc/mdx703

Imyanitov EN. Molecular targets in lung cancer: current status // Practical oncology. 2018;19(2):93–104. https: // doi: https://www.doi.org/10.31917/1902093

Imyanitov EN. General concepts of targeted therapy // Practical oncology. 2010:11(3):123–130.

Cross DA, Ashton SE, Ghiorghiu S et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer // Cancer Discov. 2014;4(9):1046–1061. https: // doi: 10.1158/2159-8290.CD-14-0337

Jänne PA, Yang JC-H, Kim D-W et al. AZD9291 in EGFR inhibitor–resistant non–small-cell lung cancer // N Engl J Med. 2015;372(18):1689–1699. https: // doi: 10.1056/NEJMoa1411817

Mok TS, Wu Y-L, Ahn M-J et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer // N Engl J Med. 2017;376(7):629–640. https: // doi: 10.1056/NEJMoa1612674

Yu HA, Sima CS, Huang J et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors // J Thorac Oncol. 2013;8(3):346–351. https: // doi: 10.1097/JTO.0b013e31827e1f83

Ragulin UA, Smolenov EI, Usachev VS, Aphonin GV. Targeted therapy of locally advanced non-small cell lung cancer with EGFR mutation // Oncology. Journal PA. Hercen, 2016;2, 48–53.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2021