Предиктивные молекулярно-генетические тесты в клинической онкологии
Загрузок: 24
Просмотров: 313
pdf

Ключевые слова

предиктивные биомаркеры,
аденокарцинома,
рак,
молекулярно-таргетная терапия,
генетическая диагностика,
обзор

Как цитировать

Янус, Г., Иевлева, А., Алексахина, С., & Имянитов, Е. . (2022). Предиктивные молекулярно-генетические тесты в клинической онкологии . Вопросы онкологии, 68(1), 17–28. https://doi.org/10.37469/0507-3758-2022-68-1-17-28

Аннотация

Молекулярно-генетическое тестирование с целью индивидуализированного назначения терапии является неотъемлемым компонентом современной практической онкологии и позволяет значительно увеличить продолжительность жизни больных. К анализируемым молекулярным событиям при этом относятся как повреждения отдельных генов (EGFR, KRAS и др.), так и некоторые интегральные характеристики опухолевого генома, например, суммарная мутационная нагрузка (tumor mutation burden, TMB) или признаки дефицита определённого звена системы репарации ДНК (микросателлитная нестабильность, дефицит гомологичной рекомбинации ДНК и т.д.). Спектр клинически значимых генетических маркеров продолжает расширяться, а некоторые из них приобретают статус «агностических», то есть информативных при опухолях самых разных локализаций. В связи с этим наблюдается тенденция замещения тестирования отдельных генов использованием мультигенных панелей, позволяющих единовременно оценить статус всех значимых предиктивных маркеров.

https://doi.org/10.37469/0507-3758-2022-68-1-17-28
Загрузок: 24
Просмотров: 313
pdf

Библиографические ссылки

Remick DG, Kunkel SL, Holbrook EA, Hanson CA. Theory and applications of the polymerase chain reaction // Am J Clin Pathol. 1990;93(4 Suppl 1):S49–54.

Claussnitzer M, Cho JH, Collins R et al. A brief history of human disease genetics // Nature. 2020;577(7789):179–189. doi:10.1038/s41586-019-1879-7

McCoy MS, Toole JJ, Cunningham JM et al. Characterization of a human colon/lung carcinoma oncogene // Nature. 1983;302(5903):79–81. doi:10.1038/302079a0

Semba K, Kamata N, Toyoshima K, Yamamoto T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma // Proc Natl Acad Sci USA. 1985;82(19):6497–501. doi:10.1073/pnas.82.19.6497

Yamazaki H, Fukui Y, Ueyama Y et al. Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors // Mol Cell Biol. 1988;8(4):1816–1820. doi:10.1128/mcb.8.4.1816-1820.1988

Marx J. Medicine. Why a new cancer drug works well, in some patients. Science. 2004;304(5671):658–659. doi:10.1126/science.304.5671.658a

Saltz LB, Meropol NJ, Loehrer PJSr et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor // J Clin Oncol. 2004;22(7):1201–1208. doi:10.1200/JCO.2004.10.182

Baselga J, Rosen N. Determinants of RASistance to anti-epidermal growth factor receptor agents // J Clin Oncol. 2008;26(10):1582–4. doi:10.1200/JCO.2007.15.3700

Poon CC, Kelly JJ. Development of crizotinib, a rationally designed tyrosine kinase inhibitor for non-small cell lung cancer // Int J Cancer. 2017;140(9):1945–1954. doi:10.1002/ijc.30533

Herdeis L, Gerlach D, McConnell DB, Kessler D. Stopping the beating heart of cancer: KRAS reviewed // Curr Opin Struct Biol. 2021;71:136–147. doi:10.1016/j.sbi.2021.06.013

Mosele F, Remon J, Mateo J et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group // Ann Oncol. 2020;31(11):1491–1505. doi:10.1016/j.annonc.2020.07.014

Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives // Crit Rev Oncol Hematol. 2021;157:103194. doi:10.1016/j.critrevonc.2020.103194

Shi Y, Au JS, Thongprasert S et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER) // J Thorac Oncol. 2014;9(2):154–162. doi:10.1097/JTO.0000000000000033

Reguart N, Remon J. Common EGFR-mutated subgroups (Del19/L858R) in advanced non-small-cell lung cancer: chasing better outcomes with tyrosine kinase inhibitors // Future Oncol. 2015;11(8):1245–1257. doi:10.2217/fon.15.15

Iyevleva AG, Mitiushkina NV, Karaseva NA et al. Lung carcinomas with EGFR exon 19 insertions are sensitive to gefitinib treatment // J Thorac Oncol. 2014;9(4):e31–3. doi:10.1097/JTO.0000000000000106

Koopman B, Cajiao Garcia BN, Kuijpers CCHJ et al. A Nationwide Study on the Impact of Routine Testing for EGFR Mutations in Advanced NSCLC Reveals Distinct Survival Patterns Based on EGFR Mutation Subclasses // Cancers (Basel). 2021;13(14):3641. doi:10.3390/cancers13143641

Syed YY. Amivantamab: First Approval // Drugs. 2021. doi:10.1007/s40265-021-01561-7

Yun J, Lee SH, Kim SY et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-MET Bispecific Antibody, in Diverse Models of EGFR Exon 20 Insertion-Driven NSCLC // Cancer Discov. 2020;10(8):1194–1209. doi:10.1158/2159-8290.CD-20-0116

Lin L, Lu Q, Cao R et al. Acquired rare recurrent EGFR mutations as mechanisms of resistance to Osimertinib in lung cancer and in silico structural modelling // Am J Cancer Res. 2020;10(11):4005–4015.

Sun F, McCoach CE. Therapeutic Advances in the Management of Patients with Advanced RET Fusion-Positive Non-Small Cell Lung Cancer // Curr Treat Options Oncol. 2021;22(8):72. doi:10.1007/s11864-021-00867-8

Remon J, Pignataro D, Novello S, Passiglia F. Current treatment and future challenges in ROS1- and ALK-rearranged advanced non-small cell lung cancer // Cancer Treat Rev. 2021;95:102178. doi:10.1016/j.ctrv.2021.102178

Duruisseaux M, Besse B, Cadranel J et al. Overall survival with crizotinib and next-generation ALK inhibitors in ALK-positive non-small-cell lung cancer (IFCT-1302 CLINALK): a French nationwide cohort retrospective study // Oncotarget. 2017;8(13):21903–21917. doi:10.18632/oncotarget.15746

Orlov SV, Iyevleva AG, Filippova EA et al. Efficacy of lorlatinib in lung carcinomas carrying distinct ALK translocation variants: The results of a single-center study // Transl Oncol. 2021;14(8):101121. doi:10.1016/j.tranon.2021.101121

Socinski MA, Pennell NA, Davies KD. MET Exon 14 Skipping Mutations in Non-Small-Cell Lung Cancer: An Overview of Biology, Clinical Outcomes, and Testing Considerations // JCO Precis Oncol. 2021;5:PO.20.00516. doi:10.1200/PO.20.00516

Drilon A, Clark JW, Weiss J et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration // Nat Med. 2020;26(1):47–51. doi:10.1038/s41591-019-0716-8

Wolf J, Seto T, Han JY et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer // N Engl J Med. 2020;383(10):944–957. doi:10.1056/NEJMoa2002787

Dhillon S. Capmatinib: First Approval // Drugs. 2020;80(11):1125–1131. doi:10.1007/s40265-020-01347-3

Mitiushkina NV, Kholmatov MM, Venina AR et al. PCR-based detection of EGFR, ALK, KRAS and BRAF mutations in Russian patients with lung adenocarcinoma: a single-center experience // Neoplasma. 2018;65(6):972–979. doi:10.4149/neo_2018_171225N843

Hong DS, Fakih MG, Strickler JH et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors // N Engl J Med. 2020;383(13):1207–1217. doi:10.1056/NEJMoa1917239

Skoulidis F, Li BT, Dy GK et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation // N Engl J Med. 2021;384(25):2371–2381. doi:10.1056/NEJMoa2103695

Blair HA. Sotorasib: First Approval // Drugs. 2021. doi:10.1007/s40265-021-01574-2

Lamberti G, Andrini E, Sisi M et al. Beyond EGFR, ALK and ROS1: Current evidence and future perspectives on newly targetable oncogenic drivers in lung adenocarcinoma // Crit Rev Oncol Hematol. 2020;156:103119. doi:10.1016/j.critrevonc.2020.103119

Sveen A, Kopetz S, Lothe RA. Biomarker-guided therapy for colorectal cancer: strength in complexity // Nat Rev Clin Oncol. 2020;17(1):11–32. doi:10.1038/s41571-019-0241-1

Sepulveda AR, Hamilton SR, Allegra CJ et al. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology // J Clin Oncol. 2017;35(13):1453–1486. doi:10.1200/JCO.2016.71.9807

Douillard JY, Oliner KS, Siena S et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer // N Engl J Med. 2013;369(11):1023–1034. doi:10.1056/NEJMoa1305275

Palmieri LJ, Mineur L, Tougeron D et al. Withholding the Introduction of Anti-Epidermal Growth Factor Receptor: Impact on Outcomes in RAS Wild-Type Metastatic Colorectal Tumors: A Multicenter AGEO Study (the WAIT or ACT Study) // Oncologist. 2020;25(2):e266–e275. doi:10.1634/theoncologist.2019-0328

Loree JM, Wang Y, Syed MA et al. Clinical and functional characterization of atypical KRAS/NRAS mutations in metastatic colorectal cancer // Clin Cancer Res. 2021:clincanres.CCR-21-0180-E.2021. doi:10.1158/1078-0432.CCR-21-0180

Volkov NM, Yanus GA, Ivantsov AO et al. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer // Invest New Drugs. 2020;38(3):894–898. doi:10.1007/s10637-019-00842-z

Aimé A, Coulet F, Lefevre JH et al. Somatic c.34G>T KRAS mutation: a new prescreening test for MUTYH-associated polyposis? // Cancer Genet. 2015;208(7–8):390–5. doi:10.1016/j.cancergen.2015.04.005

Yanus GA, Akhapkina TA, Ivantsov AO et al. Spectrum of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies // Clin Genet. 2018;93(5):1015–1021. doi:10.1111/cge.13228

Johnson B, Kopetz S. Applying Precision to the Management of BRAF-Mutant Metastatic Colorectal Cancer // Target Oncol. 2020;15(5):567–577. doi:10.1007/s11523-020-00747-5

Prahallad A, Sun C, Huang S et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR // Nature. 2012;483(7387):100–103. doi:10.1038/nature10868

Kopetz S, Grothey A, Yaeger R et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer // N Engl J Med. 2019;381(17):1632–1643. doi:10.1056/NEJMoa1908075

Nowak JA. HER2 in Colorectal Carcinoma: Are We There yet? // Surg Pathol Clin. 2020;13(3):485–502. doi:10.1016/j.path.2020.05.007

Gilson P, Merlin JL, Harlé A. Detection of Microsatellite Instability: State of the Art and Future Applications in Circulating Tumour DNA (ctDNA) // Cancers (Basel). 2021;13(7):1491. doi:10.3390/cancers13071491

Luchini C, Bibeau F, Ligtenberg MJL et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach // Ann Oncol. 2019;30(8):1232–1243. doi:10.1093/annonc/mdz116

Battaglin F, Naseem M, Lenz HJ, Salem ME. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives // Clin Adv Hematol Oncol. 2018;16(11):735–745.

André T, Shiu KK, Kim TW et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer // N Engl J Med. 2020;383(23):2207–2218. doi:10.1056/NEJMoa2017699

Borg A, Tandon AK, Sigurdsson H et al. HER-2/neu amplification predicts poor survival in node-positive breast cancer // Cancer Res. 1990;50(14):4332–4337.

Murthy RK, Loi S, Okines A et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer // N Engl J Med. 2020;382(7):597–609. doi:10.1056/NEJMoa1914609

Exman P, Tolaney SM. HER2-positive metastatic breast cancer: a comprehensive review // Clin Adv Hematol Oncol. 2021;19(1):40–50.

Sauter G, Lee J, Bartlett JM et al. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations // J Clin Oncol. 2009;27(8):1323–1333. doi:10.1200/JCO.2007.14.8197

Zhang H, Moisini I, Ajabnoor RM et al. Applying the New Guidelines of HER2 Testing in Breast Cancer // Curr Oncol Rep. 2020;22(5):51. doi:10.1007/s11912-020-0901-4

André F, Ciruelos E, Rubovszky G et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer // N Engl J Med. 2019;380(20):1929–1940. doi:10.1056/NEJMoa1813904

Pouptsis A, Swafe L, Patwardhan M, Stavraka C. Surgical and Systemic Treatment of Hereditary Breast Cancer: A Mini-Review With a Focus on BRCA1 and BRCA2 Mutations // Front Oncol. 2020;10:553080. doi:10.3389/fonc.2020.553080

Loibl S, Poortmans P, Morrow M et al. Breast cancer // Lancet. 2021;397(10286):1750–1769. doi:10.1016/S0140-6736(20)32381-3

Giugliano F, Crimini E, Tarantino P et al. First line treatment of BRAF mutated advanced melanoma: Does one size fit all? // Cancer Treat Rev. 2021;99:102253. doi:10.1016/j.ctrv.2021.102253

Hodi FS, Corless CL, Giobbie-Hurder A et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin // J Clin Oncol. 2013;31(26):3182–3190. doi:10.1200/JCO.2012.47.7836

Lee SJ, Kim TM, Kim YJ et al. Phase II Trial of Nilotinib in Patients With Metastatic Malignant Melanoma Harboring KIT Gene Aberration: A Multicenter Trial of Korean Cancer Study Group (UN10-06) // Oncologist. 2015;20(11):1312–9. doi:10.1634/theoncologist.2015-0161

Kelly CM, Gutierrez Sainz L, Chi P. The management of metastatic GIST: current standard and investigational therapeutics // J Hematol Oncol. 2021;14(1):2. doi:10.1186/s13045-020-01026-6

Nishida T, Yoshinaga S, Takahashi T, Naito Y. Recent Progress and Challenges in the Diagnosis and Treatment of Gastrointestinal Stromal Tumors // Cancers (Basel). 2021;13(13):3158. doi:10.3390/cancers13133158

Heinrich MC, Jones RL, von Mehren M et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial // Lancet Oncol. 2020;21(7):935–946. doi:10.1016/S1470-2045(20)30269-2

Romei C, Elisei R. A Narrative Review of Genetic Alterations in Primary Thyroid Epithelial Cancer // Int J Mol Sci. 2021;22(4):1726. doi:10.3390/ijms22041726

Brose MS, Cabanillas ME, Cohen EE et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial // Lancet Oncol. 2016;17(9):1272–1282. doi:10.1016/S1470-2045(16)30166-8

Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes // Nat Rev Clin Oncol. 2018;15(3):151–167. doi:10.1038/nrclinonc.2017.175

Bradford D, Larkins E, Mushti SL et al. FDA Approval Summary: Selpercatinib for the Treatment of Lung and Thyroid Cancers with RET Gene Mutations or Fusions // Clin Cancer Res. 2021;27(8):2130–2135. doi:10.1158/1078-0432.CCR-20-3558

Bekaii-Saab TS, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma // Ann Oncol. 2021:S0923–7534(21)01169-8. doi:10.1016/j.annonc.2021.04.012

Abou-Alfa GK, Sahai V, Hollebecque A et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study // Lancet Oncol. 2020;21(5):671–684. doi:10.1016/S1470-2045(20)30109-1

Rizzo A, Ricci AD, Brandi G. IDH inhibitors in advanced cholangiocarcinoma: Another arrow in the quiver? // Cancer Treat Res Commun. 2021;27:100356. doi:10.1016/j.ctarc.2021.100356

Abou-Alfa GK, Macarulla T, Javle MM et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study // Lancet Oncol. 2020;21(6):796–807. doi:10.1016/S1470-2045(20)30157-1

Subbiah V, Lassen U, Élez E et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial // Lancet Oncol. 2020;21(9):1234–1243. doi:10.1016/S1470-2045(20)30321-1

Silkin SV, Startsev SS, Krasnova ME et al. Complete Clinical Response of BRAF-Mutated Cholangiocarcinoma to Vemurafenib, Panitumumab, and Irinotecan // J Gastrointest Cancer. 2016;47(4):502–505. doi:10.1007/s12029-015-9792-2

Pal SK, Rosenberg JE, Hoffman-Censits JH et al. Efficacy of BGJ398, a Fibroblast Growth Factor Receptor 1–3 Inhibitor, in Patients with Previously Treated Advanced Urothelial Carcinoma with FGFR3 Alterations // Cancer Discov. 2018;8(7):812–821. doi:10.1158/2159-8290.CD-18-0229

Lyou Y, Grivas P, Rosenberg JE et al. Hyperphosphatemia Secondary to the Selective Fibroblast Growth Factor Receptor 1-3 Inhibitor Infigratinib (BGJ398) Is Associated with Antitumor Efficacy in Fibroblast Growth Factor Receptor 3-altered Advanced/Metastatic Urothelial Carcinoma // Eur Urol. 2020;78(6):916–924. doi:10.1016/j.eururo.2020.08.002

Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker // Cancer Cell. 2021;39(2):154–173. doi:10.1016/j.ccell.2020.10.001

Marabelle A, Fakih M, Lopez J et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study // Lancet Oncol. 2020;21(10):1353–1365. doi:10.1016/S1470-2045(20)30445-9

Adashek JJ, Subbiah V, Kurzrock R. From Tissue-Agnostic to N-of-One Therapies: (R)Evolution of the Precision Paradigm // Trends Cancer. 2021;7(1):15–28. doi:10.1016/j.trecan.2020.08.009

Wang X, Ricciuti B, Alessi JV et al. Smoking History as a Potential Predictor of Immune Checkpoint Inhibitor Efficacy in Metastatic Non-Small Cell Lung Cancer // J Natl Cancer Inst. 2021:djab116. doi:10.1093/jnci/djab116

Viel A, Bruselles A, Meccia E et al. Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer // EBioMedicine. 2017;20:39–49. doi:10.1016/j.ebiom.2017.04.022

Wang C, Gong J, Tu TY et al. Immune profiling of microsatellite instability-high and polymerase ε (POLE)-mutated metastatic colorectal tumors identifies predictors of response to anti-PD-1 therapy // J Gastrointest Oncol. 2018;9(3):404–415. doi:10.21037/jgo.2018.01.09

Iyevleva AG, Imyanitov EN. Cytotoxic and targeted therapy for hereditary cancers // Hered Cancer Clin Pract. 2016;14(1):17. doi:10.1186/s13053-016-0057-2

Ladan MM, van Gent DC, Jager A. Homologous Recombination Deficiency Testing for BRCA-Like Tumors: The Road to Clinical Validation // Cancers (Basel). 2021;13(5):1004. doi:10.3390/cancers13051004

Maxwell KN, Wubbenhorst B, Wenz BM et al. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers // Nat Commun. 2017;8(1):319. doi:10.1038/s41467-017-00388-9

Jonsson P, Bandlamudi C, Cheng ML et al. Tumour lineage shapes BRCA-mediated phenotypes // Nature. 2019;571(7766):576–579. doi:10.1038/s41586-019-1382-1

Sokolenko AP, Gorodnova TV, Bizin IV et al. Molecular predictors of the outcome of paclitaxel plus carboplatin neoadjuvant therapy in high-grade serous ovarian cancer patients // Cancer Chemother Pharmacol. 2021;88(3):439–450. doi:10.1007/s00280-021-04301-6

Hyman DM, Puzanov I, Subbiah V et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations // N Engl J Med. 2015;373(8):726–36. doi:10.1056/NEJMoa1502309

Amodio V, Yaeger R, Arcella P et al. EGFR Blockade Reverts Resistance to KRAS(G12C) Inhibition in Colorectal Cancer // Cancer Discov. 2020;10(8):1129–1139. doi:10.1158/2159-8290.CD-20-0187

Stemer G, Rowe JM, Ofran Y. Efficacy and Safety Profile of Ivosidenib in the Management of Patients with Acute Myeloid Leukemia (AML): An Update on the Emerging Evidence // Blood Lymphat Cancer. 2021;11:41–54. doi:10.2147/BLCTT.S236446

Cerchione C, Romano A, Daver N et al. IDH1/IDH2 Inhibition in Acute Myeloid Leukemia // Front Oncol. 2021;11:639387. doi:10.3389/fonc.2021.639387

Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy // Nat Rev Clin Oncol. 2021. doi:10.1038/s41571-021-00521-0

Ando Y, Iwasa S, Takahashi S et al. Phase I study of alpelisib (BYL719), an α-specific PI3K inhibitor, in Japanese patients with advanced solid tumors // Cancer Sci. 2019;110(3):1021–1031. doi:10.1111/cas.13923

Langer CJ, Redman MW, Wade JL et al. SWOG S1400B (NCT02785913), a Phase II Study of GDC-0032 (Taselisib) for Previously Treated PI3K-Positive Patients with Stage IV Squamous Cell Lung Cancer (Lung-MAP Sub-Study) // J Thorac Oncol. 2019;14(10):1839–1846. doi:10.1016/j.jtho.2019.05.029

Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade // Science. 2017;357(6349):409–413. doi:10.1126/science.aan6733

Marabelle A, Le DT, Ascierto PA et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study // J Clin Oncol. 2020;38(1):1–10. doi:10.1200/JCO.19.02105

Roviello G, D'Angelo A, Sciortino M et al. TRK fusion positive cancers: From first clinical data of a TRK inhibitor to future directions // Crit Rev Oncol Hematol. 2020;152:103011. doi:10.1016/j.critrevonc.2020.103011

Rohrberg KS, Lassen U. Detecting and Targeting NTRK Fusions in Cancer in the Era of Tumor Agnostic Oncology // Drugs. 2021;81(4):445–452. doi:10.1007/s40265-020-01459-w

de Salins V, Loganadane G, Joly C et al. Complete response in anaplastic lymphoma kinase-rearranged oncocytic thyroid cancer: A case report and review of literature // World J Clin Oncol. 2020;11(7):495–503. doi:10.5306/wjco.v11.i7.495

Preobrazhenskaya EV, Iyevleva AG, Suleymanova AM et al. Gene rearrangements in consecutive series of pediatric inflammatory myofibroblastic tumors // Pediatr Blood Cancer. 2020;67(5):e28220. doi:10.1002/pbc.28220

Garcia-Pardo M, Ortega L, Fernández-Aceñero MJ et al. Molecular Profiling and Targeted Therapy in Cholangiocarcinoma: An Observational, Retrospective Multicenter Study // J Gastrointest Cancer. 2021;52(2):814–818. doi:10.1007/s12029-021-00622-0

Robertson SJ, Orme L, Teixeira R et al. Evaluation of Crizotinib Treatment in a Patient With Unresectable GOPC-ROS1 Fusion Agminated Spitz Nevi // JAMA Dermatol. 2021;157(7):836–841. doi:10.1001/jamadermatol.2021.0025

Cabel L, Fuerea A, Lacroix L et al. Efficacy of histology-agnostic and molecularly-driven HER2 inhibitors for refractory cancers // Oncotarget. 2018;9(11):9741–9750. doi:10.18632/oncotarget.24188

Takahashi K, Ishibashi E, Kubo T et al. A phase 2 basket trial of combination therapy with trastuzumab and pertuzumab in patients with solid cancers harboring human epidermal growth factor receptor 2 amplification (JUPITER trial) // Medicine (Baltimore). 2020;99(32):e21457. doi:10.1097/MD.0000000000021457

Massard C, Michiels S, Ferté C et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial // Cancer Discov. 2017;7(6):586–595. doi:10.1158/2159-8290.CD-16-1396

Rodon J, Soria JC, Berger R et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial // Nat Med. 2019;25(5):751–758. doi:10.1038/s41591-019-0424-4

Sicklick JK, Kato S, Okamura R et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study // Nat Med. 2019;25(5):744–750. doi:10.1038/s41591-019-0407-5

Kato S, Kim KH, Lim HJ et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy // Nat Commun. 2020;11(1):4965. doi:10.1038/s41467-020-18613-3

Wheler JJ, Janku F, Naing A et al. TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics // Mol Cancer Ther. 2016;15(10):2475–2485. doi:10.1158/1535-7163.MCT-16-0196

Li AM, Boichard A, Kurzrock R. Mutated TP53 is a marker of increased VEGF expression: analysis of 7,525 pan-cancer tissues // Cancer Biol Ther. 2020;21(1):95–100. doi:10.1080/15384047.2019.1665956

Shirdarreh M, Aziza O, Pezo RC et al. Patients' and Oncologists' Knowledge and Expectations Regarding Tumor Multigene Next-Generation Sequencing: A Narrative Review // Oncologist. 2021. doi:10.1002/onco.13783

Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-Analyzed Tumors // Cell. 2018;173(2):530. doi:10.1016/j.cell.2018.03.059

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes // Nature. 2020;578(7793):82–93. doi:10.1038/s41586-020-1969-6

Li Y, Roberts ND, Wala JA et al. Patterns of somatic structural variation in human cancer genomes // Nature. 2020;578(7793):112–121. doi:10.1038/s41586-019-1913-9

Vogelstein B, Papadopoulos N, Velculescu VE et al. Cancer genome landscapes //Science.2013;339(6127):1546–1558. doi:10.1126/science.1235122

Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression // Science. 2020;368(6487):eaaw5473. doi:10.1126/science.aaw5473

Irmisch A, Bonilla X, Chevrier S et al. The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support // Cancer Cell. 2021;39(3):288–293. doi:10.1016/j.ccell.2021.01.004

Lennon AM, Buchanan AH, Kinde I et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention // Science. 2020;369(6499):eabb9601. doi:10.1126/science.abb9601

Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance // Biochim Biophys Acta Rev Cancer. 2019;1872(2):188310. doi:10.1016/j.bbcan.2019.188310

Mueller KL, Theoret MR, Lemery SJ et al. Neoadjuvant Therapy for Melanoma: A U.S. Food and Drug Administration-Melanoma Research Alliance Public Workshop // Clin Cancer Res. 2021;27(2):394–401. doi:10.1158/1078-0432.CCR-20-3285

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2021