Молекулярные механизмы противоопухолевого эффектa терморадиотерапии у больных злокачественными новообразованиями с метаболическими нарушениями
Загрузок: 122
Просмотров: 205
pdf

Ключевые слова

локальная гипертермия
химиолучевое лечение
рак
ожирение
системы репарации ДНК
циркулирующие опухолевые клетки
внеклеточные везикулы
микроРНК

Как цитировать

Юнусова, Н., Сваровский, Д., Коновалов, А., Сиденко, Е., & Старцева, Ж. (2023). Молекулярные механизмы противоопухолевого эффектa терморадиотерапии у больных злокачественными новообразованиями с метаболическими нарушениями. Вопросы онкологии, 69(3), 373–382. https://doi.org/10.37469/0507-3758-2023-69-3-373-382

Аннотация

Особый интерес вызывают исследования по применению дистанционной лучевой терапии или химиолучевой терапии в сочетании с локальной гипертермией, результаты которых свидетельствуют о повышении непосредственной эффективности лучевой терапии за счет выраженной регрессии опухоли, а также увеличении длительности безрецидивного периода для ряда локализаций. Молекулярные механизмы эффективности локальной гипертермии в составе комбинированного лечения у больных злокачественными новообразованиями с метаболическими нарушениями недостаточно изучены. Эти механизмы могут быть ассоциированы с изменениями на уровне клетки (особенности системы репарации ДНК в опухоли при ожирении; miRNA в опухоли, ассоциированные с терморадиорезистентностью на фоне ожирения; стволовые клетки в опухоли на фоне ожирения, циркулирующие опухолевые клетки), а также с внеклеточными факторами, которые в свою очередь можно разделить на растворимые компоненты биологических жидкостей (например, плазмы крови, асцитической жидкости) и внеклеточные везикулы. Проблемы при проведении терапии больных злокачественными новообразованиями с метаболическими нарушениями связаны с отсутствием клинических рекомендаций по использованию локальной гипертермии, с недостаточной разработанностью методических подходов (способов и техник нагрева, длительностью сеанса, необходимыми температурам и количеством процедур), а также с не изученностью факторов прогноза эффективности комбинированного лечения.

https://doi.org/10.37469/0507-3758-2023-69-3-373-382
Загрузок: 122
Просмотров: 205
pdf

Библиографические ссылки

Чойнзонов Е.Л., Старцева Ж.А., Мухамедов М.Р. и др. Локальная гипертермия в комбинированном лечении рака гортани и гортаноглотки. Сибирский онкологический журнал. 2014;(5):59 [Choynzonov ЕL, Startseva ZА, Mukhamedov МR et al. Local hyperthermia in combined modality treatment of laryngeal and laryngopharyngeal cancer. Siberian journal of oncology. 2014;(5):59 (In Russ.)].

Esposito K, Chiodini P, Colao A, et al. Metabolic Syndrome and Risk of Cancer. Diabetes Care. 2012;35(11):24022411. doi:10.2337/dc12-0336.

Юнусова Н.В., Кондакова И.В., Афанасьев С.Г. и др. Ассоциированные с метаболическим синдромом злокачественные новообразования: особенности транскрипционных и ростовых факторов. Вопросы онкологии. 2017;(6):817823. [Yunusova NV, Kondakova IV, Afanasiev SG, et al. Malignant tumors associated with metabolic syndrome: the expression profile of the transcriptional and growth factors. Voprosy Onkologii. 2017;(6):817823 (In Russ.)]. doi:10.37469/0507-3758-2017-63-6-817-823.

Janus P, Stokowy T, Jaksik R, et al. Cross talk between cytokine and hyperthermia-induced pathways: identification of different subsets of NF-κB-dependent genes regulated by TNFα and heat shock. Mol Genet Genomics. 2015;290(5):19791990. doi:10.1007/s00438-015-1055-1.

Lee H, Park HJ, Park CS, et al. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One. 2014;9(2):e87979. doi:10.1371/journal.pone.0087979.

Xue N, Lai F, Du T, et al. Chaperone-mediated autophagy degradation of IGF-1Rβ induced by NVP-AUY922 in pancreatic cancer. Cell Mol Life Sci. 2019;76(17):34333447. doi:10.1007/s00018-019-03080-x.

Wang G, Xu D, Chai Q, et al. Magnetic fluid hyperthermia inhibits the growth of breast carcinoma and downregulates vascular endothelial growth factor expression. Oncol Lett. 2014;7(5):13701374. doi:10.3892/ol.2014.1893.

Kaur P, Hurwitz MD, Krishnan S, Asea A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers (Basel). 2011;3(4):37993823. doi:10.3390/cancers3043799.

van den Tempel N, Odijk H, van Holthe N, et al. Heat-induced BRCA2 degradation in human tumours provides rationale for hyperthermia-PARP-inhibitor combination therapies. International Journal of Hyperthermia. 2017;34(4):407414. doi:10.1080/02656736.2017.1355487.

Han CY. Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes Metab J. 2016;40(4):272. doi:10.4093/dmj.2016.40.4.272.

Tiveron RDR, Costa DA, Leite MDI, et al. Evaluation of cell damage and modulation of cytokines TNF-α, IL-6 and IL-10 in macrophages exposed to PpIX-mediated photodynamic therapy. Braz J Biol. 2020;80(3):497505. doi:10.1590/1519-6984.193748.

McAdam E, Brem R, Karran P. Oxidative stress–induced protein damage inhibits DNA repair and determines mutation risk and therapeutic efficacy. Molecular Cancer Research. 2016;14(7):612622. doi:10.1158/1541-7786.mcr-16-0053.

Zwamborn RAJ, Slieker RC, Mulder PCA, et al. Prolonged high-fat diet induces gradual and fat depot-specific DNA methylation changes in adult mice. Sci Rep. 2017;7(1). doi:10.1038/srep43261.

Noh JJ, Kim MK, Choi MC, et al. Frequency of Mismatch Repair Deficiency/High Microsatellite Instability and Its Role as a Predictive Biomarker of Response to Immune Checkpoint Inhibitors in Gynecologic Cancers. Cancer Res Treat. 2022;54(4):12001208. doi:10.4143/crt.2021.828.

Manning-Geist BL, Liu YL, Devereaux KA, et al. Microsatellite Instability–High Endometrial Cancers with MLH1 Promoter Hypermethylation Have Distinct Molecular and Clinical Profiles. Clinical Cancer Research. 2022;28(19):43024311. doi:10.1158/1078-0432.ccr-22-0713.

Metcalf AM, Spurdle AB. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review. Familial Cancer. 2013;13(1):112. doi:10.1007/s10689-013-9671-6.

Haraldsdottir S, Hampel H, Tomsic J, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147(6):13081316.e1. doi:10.1053/j.gastro.2014.08.041.

Sottile ML, Losinno AD, Fanelli MA, et al. Hyperthermia effects on Hsp27 and Hsp72 associations with mismatch repair (MMR) proteins and cisplatin toxicity in MMR-deficient/proficient colon cancer cell lines. International Journal of Hyperthermia. 2015;31(5):464475. doi:10.3109/02656736.2015.1026848.

Roufayel R, Johnston DS, Mosser DD. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5(11):e1546e1546. doi:10.1038/cddis.2014.484.

Luo Z, Zheng K, Fan Q, et al. Hyperthermia exposure induces apoptosis and inhibits proliferation in HCT116 cells by upregulating miR‑34a and causing transcriptional activation of p53. Exp Ther Med. 2017;14(6):53795386. doi:10.3892/etm.2017.5257.

Zheng L, Zhang Y, Liu Y, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13(1). doi:10.1186/s12967-015-0592-z.

Yang XD, Xu XH, Zhang SY, et al. Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res. 2015;5(2):545-559.

Zhou H, Lin C, Zhang Y, et al. miR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Prolif. 2017;50(3):e12341. doi:10.1111/cpr.12341.

Ma W, Yu J, Qi X, et al. Radiation-induced microRNA-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget. 2015;6(18):1598415994. doi:10.18632/oncotarget.3762.

Feng Y, Jiang W, Zhao W, et al. miR-124 regulates liver cancer stem cells expansion and sorafenib resistance. Experimental Cell Research. 2020;394(2):112162. doi:10.1016/j.yexcr.2020.112162.

Arora H, Qureshi R, Park WY. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One. 2013;8(5):e64273. doi:10.1371/journal.pone.0064273 506.

Liao F, Chen X, Peng P, et al. RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer. Aging. 2020;12(20):2051220522. doi:10.18632/aging.103907.

Fan X, Wang J, Qin T, et al. Exosome miR-27a-3p secreted from adipocytes targets ICOS to promote antitumor immunity in lung adenocarcinoma. Thorac Cancer. 2020;11(6):14531464. doi:10.1111/1759-7714.13411.

Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:122. doi:10.1186/s13045-015-0220-7.

Seo M, Kim SM, Woo EY, et al. Stemness-Attenuating miR-503-3p as a Paracrine Factor to Regulate Growth of Cancer Stem Cells. Stem Cells Int. 2018;2018:4851949. doi:10.1155/2018/4851949.

Rajarajan D, Selvarajan S, Charan Raja MR, et al. Genome-wide analysis reveals miR-3184-5p and miR-181c-3p as a critical regulator for adipocytes-associated breast cancer. J. Cell Physiol. 2019;234(10):1795917974. doi:10.1002/jcp.28428.

Liu Y, Tan J, Ou S, et al. Adipose-derived exosomes deliver miR-23a/b to regulate tumor growth in hepatocellular cancer by targeting the VHL/HIF axis. J. Physiol. Biochem. 2019;75(3):391401. doi:10.1007/s13105-019-00692-6.

Lou G, Chen L, Xia C, et al. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J. Exp. Clin. Cancer Res. 2020;39(4) doi:10.1186/s13046-019-1512-5.

Wu Q, Li J, Li Z, et al. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J. Exp. Clin. Cancer Res. 2023;12;42(1):17.

Picon-Ruiz M, Pan C, Drews-Elger K, et al. Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b-Mediated Malignant Progression. Cancer Res. 2016;76(2):491504. doi:10.1158/0008-5472.CAN-15-0927.

Roufayel R, Johnston DS, Mosser DD. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5(11):e1546e1546. doi:10.1038/cddis.2014.484.

Yunusova NV, Dandarova EE, Svarovsky DA, et al. Production and Internalization of Extracellular Vesicles in Norm and under Conditions of Hyperglycemia and Insulin Resistance. Biochem Moscow Suppl Ser B. 2022;16(2):104112. doi:10.1134/s199075082202010x.

Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557563. doi:10.1038/nature06188.

Wu Q, Li B, Li Z, et al. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1). doi:10.1186/s13045-019-0778-6.

Cho JA, Park H, Kim HK, et al. Hyperthermia-treated mesenchymal stem cells exert antitumor effects on human carcinoma cell line. Cancer. 2008;115(2):311323. doi:10.1002/cncr.24032.

Fayanju OM, Hall CS, Bauldry JB, et al. Body mass index mediates the prognostic significance of circulating tumor cells in inflammatory breast cancer. The American Journal of Surgery. 2017;214(4):666671. doi:10.1016/j.amjsurg.2017.06.005.

Melero JT, Ortega FG, Gonzalez AM, et al. Prognostic factor analysis of circulating tumor cells in peripheral blood of patients with peritoneal carcinomatosis of colon cancer origin treated with cytoreductive surgery plus an intraoperative hyperthermic intraperitoneal chemotherapy procedure (CRS + HIPEC). Surgery. 2016;159(3):728735. doi:10.1016/j.surg.2015.09.013.

Tansi FL, Maduabuchi WO, Hirsch M, et al. Deep-tissue localization of magnetic field hyperthermia using pulse sequencing. International Journal of Hyperthermia. 2021;38(1):743754. doi:10.1080/02656736.2021.1912412.

Zhou Y, Rui L. Leptin signaling and leptin resistance. Front Med. 2013;7(2):207222. doi:10.1007/s11684-013-0263-5.

Achari A, Jain S. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. IJMS. 2017;18(6):1321. doi:10.3390/ijms18061321.

Mauro L, Naimo GD, Ricchio E, et al. Cross-Talk between Adiponectin and IGF-IR in Breast Cancer. Front Oncol. 2015;5. doi:10.3389/fonc.2015.00157.

Tugutova EA, Tamkovich SN, Patysheva MR, et al. Relation between tetraspanin- associated and tetraspanin- non- associated exosomal proteases and metabolic syndrome in colorectal cancer patients. Asian Pac J Cancer Prev. 2019;20(3):809815. doi:10.31557/apjcp.2019.20.3.809.

Li C, Cheng H, Adhikari BK, et al. The role of apelin–APJ system in diabetes and obesity. Front Endocrinol. 2022;13. doi:10.3389/fendo.2022.820002.

Berta J, Hoda MA, Laszlo V, et al. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget. 2014;5(12):44264437. doi:10.18632/oncotarget.2032.

Wang YY, Hung AC, Lo S, Yuan SSF. Adipocytokines visfatin and resistin in breast cancer: Clinical relevance, biological mechanisms, and therapeutic potential. Cancer Letters. 2021;498:229239. doi:10.1016/j.canlet.2020.10.045.

Yang CC, Chang SF, Chao JK, et al. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin. BMC Cancer. 2014;14(1). doi:10.1186/1471-2407-14-112.

Xu D, Tang WJ, Zhu YZ, et al. Hyperthermia promotes exosome secretion by regulating Rab7b while increasing drug sensitivity in adriamycin-resistant breast cancer. International Journal of Hyperthermia. 2022;39(1):246257. doi:10.1080/02656736.2022.2029585.

Furuhashi M, Hiramitsu S, Mita T, et al. Reduction of serum FABP4 level by sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes mellitus. Journal of Lipid Research. 2015;56(12):23722380. doi:10.1194/jlr.m059469.

Юнусова Н.В., Сваровский Д.А., Дандарова Е.Э. и др. Матриксные металлопротеиназы и белки теплового шока на внеклеточных везикулах у больных колоректальным раком: связь с метаболическим статусом. Успехи молекулярной онкологии. 2022;9(3):3848 [Yunusova NV, Svarovsky DA, Dandarova EE, et al. Matrix metalloproteinases and heat shock proteins on extracellular vesicles in colorectal cancer patients: association with metabolic status. Usp mol onkol. 2022;9(3):3848 (In Russ.)]. doi:10.17650/2313-805X-2022-9-3-38-48.

Freeman DW, Noren Hooten N, Eitan E, et al. Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes. 2018;67(11):23772388. doi:10.2337/db17-1308.

Bauer S, Wanninger J, Neumeier M, et al. Elevated free fatty acids and impaired adiponectin bioactivity contribute to reduced SOD2 protein in monocytes of type 2 diabetes patients. Experimental and Molecular Pathology 2011;90:1016. doi:10.1016/j.yexmp.2010.10.010.

Singh N, Baby D, Rajguru J, et al. Inflammation and cancer. Ann Afr Med. 2019;18(3):121. doi:10.4103/aam.aam_56_18.

Schildkopf P, Frey B, Ott OJ, et al. Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiotherapy and Oncology. 2011;101(1):109115. doi:10.1016/j.radonc.2011.05.056.

Chen PM, Pan WY, Wu CY, et al. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials. 2020;230:119629. doi:10.1016/j.biomaterials.2019.119629.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2023