EVALUATING THE MIM MAESTRO SYSTEM'S CAPABILITIES IN THE PROCESS OF PREPARATION AND CONDUCTING REMOTE RADIOTHERAPY
##article.numberofdownloads## 46
##article.numberofviews## 238
PDF (Русский)

Keywords

EXTERNAL BEAM RADIATION THERAPY
RADIATION TREATMENT PLANNING SYSTEM
DEFORMABLE REGISTRATION
CONTOURING
HEAD AND NECK

How to Cite

Panshin, G., Sotnikov, V., Izmaylov, T., Slobina, Y., Smyslov, A., Vasilev, V., & Polushkin, P. (2020). EVALUATING THE MIM MAESTRO SYSTEM’S CAPABILITIES IN THE PROCESS OF PREPARATION AND CONDUCTING REMOTE RADIOTHERAPY. Voprosy Onkologii, 66(2), 187–195. https://doi.org/10.37469/0507-3758-2020-66-2-187-195

Abstract

The development of the mathematical model and software for deformable registration of tomographic images of various modalities made it possible to approach to solving a number of tasks such as automatic contouring, adaptive radiation therapy and evaluation of the patient's absorbed dose distributions. One of such the software systems implementing deformable registration is MIM and its module, focused on radiation therapy MIM Maestro. The mathematical basis of the MIM system is the deformable registration algorithms efficiency of which depended on the accuracy and speed of their operation. These parameters were estimated on the basis of deformable registration of CBCT data obtained on the TrueBeam linear accelerator in the process of implementing radiation therapy treatment plans, and initial CT data, on the basis of which the radiation treatment planning was carried out. A number of advantages of the MIM system (the ability to work in all major sections, predicting the shape of the contour) provide convenience and speed of the workflow, but do not allow abandoning the use of the Eclipse system due to its available possibilities related to features of radiation therapy (work with boluses, a library of therapeutic tables, appointment of material properties). Automatic atlas contouring based on deformable registration algorithms works at an acceptable speed, but requires manual editing of the result both when using the atlas supplied by the manufacturer with the MIM Maestro system and when using our own atlases created during the system testing. Thus, the MIM Maestro system, having a high potential of the deformable registration methods implemented in it, at the same time does not allow fully automating the process, but requires careful visual control and laborious manual correction of the result.

https://doi.org/10.37469/0507-3758-2020-66-2-187-195
##article.numberofdownloads## 46
##article.numberofviews## 238
PDF (Русский)

References

Васильев В.Н., Смыслов А.Ю., Русецкий С.С. и др. Анализ характеристик КТ-изображений и электронной плотности органов и тканей, полученных в коническом пучке на ускорителе TrueBeam и рентгеновском симуляторе simulix-HQ // Мед. физика. - 2018. - № 4. - С. 5-17.

Измайлов Т.Р, Смыслов А.Ю., Амелина Н.С. Подготовка и реализация планов облучения пациента, проходившего лечение в ФГБУ "РНЦРР" с использованием метода стереотаксиса // Вестник "Российского научного центра рентгенорадиологии. - 2017. - № 3. - http://vestnik.mcrr.ru/vestnik/v17/docs/izmailov.pdf.

Смыслов А.Ю., Русецкий С.С., Васильев В.Н., Коконцев А.А. Влияние погрешности калибровки электронной плотности на расчет дозы при планировании лучевой терапии // Мед. физика. - 2017. - № 2. - С. 17-28.

Abe T., Tamaki T, Makino S. et al. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with preimaging preparations // Radiat. Oncol. - 2014. - Vol. 20. - № 9. - P. 293. - DOI: 10.1186/s13014-014-0293

Broggi s., scalco E., Belli M.L. et al. A Comparative Evaluation of 3 Different Free-Form Deformable Image Registration and Contour Propagation Methods for Head and Neck MRI: the Case of Parotid Changes During Radiotherapy // Technol. Cancer. Res. Treat. - 2017. - Vol. 16. - № 3. - P. 373-381.

Eldesoky A.R., Yates E.S., Nyeng T.B. et al. Internal and external validation of an ESTRO delineation guideline - dependent automated segmentation tool for loco-regional radiation therapy of early breast cancer // Radiother.Oncol. - 2016. - Vol. 121. - № 3. - P. 424-430.

Ferjani s., Huang G., Shang Q., Xia P. Using shifting Planned Dose Matrix to Evaluate Daily Dose Changes for IMRT Prostate Treatment // Med.Phys. - 2012. - Vol. 39. - P. 3659.

Johnson P.B., Padgett K.R., Chen K.L., Dogan N. evaluation of the tool "Reg Refine" for user-guided deformable image registration // Journal of Applied Clinical Medical Physics. - 2016. - Vol. 17. - № 3. - P. 158-170.

Horvat M., Nelson A.S., Pirozzi S.D. Time savings of a Multi-Atlas Approach for Liver segmentation // J.NucI. Med. - 2014. - Vol. 55(suppl. 1). - P. 1523.

Kirby N., Chuang C., Ueda U., Pouliot J. The need for application-based adaptation of deformable image registration // Med. Phys. - 2013. - Vol. 40. - № 1. - 011702-1-10.

La Macchia M., Fellin F., Amichetti M. et al. systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer // Radiat Oncol. - 2012. - Vol. 7. - P. 160. - DOI: 10.1186/1748-717X-7-160

Li W., Vassil A., Zhong Y., Xia P. Evaluation of Atlas-Based Auto-segmentation on Daily In-Room CT for Prostate Cancer // Med.Phys. - 2012. - Vol. 39. - P. 3676.

Lin A., Kubicek G., Piper J.W. et al. Atlas-Based segmentation in Prostate IMRT: Timesavings in the Clinical Workflow // Int.J.Radiat.Oncol.Biol.Phys. - 2008. - Vol. 72(suppl.1). - P. s328-s329.

Liu H., Greskovich J., Koyfman S., Xia P. Evaluation of Volumetric Change and Dosimetric Discrepancy with Daily Cone-Beam CT for Patients with Head-and-Neck Cancer // Med.Phys. - 2012. - Vol. 39. - P. 3782.

Nelson A.S., Piper J.W., Pirozzi S.D. et al. evaluation of Deformable Prostate Cone-Beam Computed Tomography (CBCT) Contouring Methods for Adaptive Radiation Therapy // Int.J.Radiat.Oncol.Biol.Phys. - 2013. - Vol. 87. - № 2. - P. s719.

Nelson A.S., Duchateau M., Piper J.W. et al. evaluation of a Free-Form Intensity Based Deformable Registration Method Using the PoPI Model // Med.Phys. - 2014. - Vol. 41. -P. 202.

Nelson A.S., Brockway J., Liu M. et al. evaluation of an Atlas-Based segmentation Method for Prostate MRI // Int.J.Radiat.Oncol.Biol.Phys. - 2014. - Vol. 90. - № 1. - P. s419-s420.

Nelson A.S., Duchateau M., Piper W.J. et al. Deformable Dose Mapping Accuracy Using a Framework for User-Intervened Correction of Deformable Registration // Med. Phys. - 2014. - Vol. 41. - P. 207.

Nie K., Chuang C., Kirby N. et al. site-specific deformable imaging registration algorithm selection using patient-based simulated deformations // Med.Phys. - 2013. - Vol. 40. - № 4. - P. 041911.

Nigay Е., Bonsall H., Meyer B. et al. Offline adaptive radiation therapy in the treatment of prostate cancer: a case study // Med.Dosim. - 2019. - Vol. 44. - № 1. - P 1-6.

Padgett K.R., Stoyanova R., Pirozzi S. et al. Validation of a deformable MRI to CT registration algorithm employing same day planning MRI for surrogate analysis // J.Appl. Clin.Med.Phys. - 2018. - Vol. 19. - № 2. - P. 258264.

Patel R.B., Traughber B., Kaminsky D. et al. evaluation of an Atlas-Based segmentation Method for High Risk Prostate Cancer with RTOG Defined Pelvic Lymph node // Int.J.Radiat.Oncol.Biol.Phys. - 2014. - Vol. 90. - № 1. - P. s74-s75.

Piper J.W. Evaluation of An Intensity-Based Free-form Deformable Registration Algorithm // Medical Physics. - 2007. - Vol. 34. - № 6. - P. 2353-2354.

Piper J.W. Evaluation of a CT to Cone-Beam CT Deformable Registration Algorithm // Int.J.Radiat.Oncol.Biol. Phys. - 2007. - Vol. 69. - № 3. - P. s418-s419.

Pirozzi S., Horvat M., Piper J., Nelson A.S. Atlas-based segmentation: evaluation of a Multi-Atlas Approach for Lung Cancer // Med Phys. - 2012. - Vol. 39. - P 3677.

Pirozzi S., Piper J., Nelson A. et al. A Novel Framework for User-Intervened Correction of Deformable Registration // Int.J.Radiat.Oncol.Biol.Phys. - 2013. - Vol. 87. - № 2. - P. s144.

Pirozzi S., Piper J., Nelson A. et al. Novel Framework for Deformable Registration Evaluation and Quality Assurance // Int.J.Radiat.Oncol.Biol.Phys. - 2013. - Vol. 87. - № 2. - P. s719.

Sugawara Y., Tachibana H., Kadoya N. et al. Prognostic factors associated with the accuracy of deformable image registration in lung cancer patients treated with stereotactic body radiotherapy // Med. Dosim. - 2017. - Vol. 42. - № 4. - P. 326-333.

Vickress J., Battista J., Barnett R., Yartsev S. Representing the dosimetric impact of deformable image registration errors // Phys.Med.Biol. - 2017. - Vol. 62. - № 17. - P. N391-N403.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2020